During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated ow...During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.展开更多
Extended warranty has recently obtained increasing attention from both manufacturers and customers in China. In this paper,given the reality of China, two types of non-renewing extended warranty were proposed: one-dim...Extended warranty has recently obtained increasing attention from both manufacturers and customers in China. In this paper,given the reality of China, two types of non-renewing extended warranty were proposed: one-dimensional extended warranty and two-dimensional extended warranty. And a combined warranty policy including pro-rata warranty policy and free-repair warranty policy was applied in these two types of warranty. Then the expected life-cycle cost models from the manufacturer and consumer's perspectives were developed considering different maintenance options. The optimal warranty policy, maintenance options,and warranty price were adopted in terms of a win-win interval which was determined by the maximum extra cost the consumer should pay and the minimum price the manufacture should sell at the extended warranty. Finally,a case study was given to prove the effectiveness and validity of the model.展开更多
The reliability of the product sold under a warranty is usually maintained by the manufacturer during the warranty period. After the expiry of the warranty, however, the consumer confronts a problem about how to maint...The reliability of the product sold under a warranty is usually maintained by the manufacturer during the warranty period. After the expiry of the warranty, however, the consumer confronts a problem about how to maintain the reliability of the product. This paper proposes, from the consumer's perspective, a replacement policy after the extended warranty, under the assumption that the product is sold under the renewable free replacement warranty (RFRW) policy in which the replacement is dependent on the repair-cost threshold. The proposed replacement policy is the replacement after the extended warranty is performed by the consumer based on the repair-cost threshold or preventive replacement (PR) age, which are decision variables. The expected cost rate model is derived from the consumer's perspective. The existence and uniqueness of the optimal solution that minimizes the expected cost rate per unit time are offered. Finally, a numerical example is presented to exemplify the proposed model.展开更多
A decision model to maximize the total profit of manufacturers in an imperfect production system is constructed.In this model the production reliability and the warranty length are jointly used as decision variables f...A decision model to maximize the total profit of manufacturers in an imperfect production system is constructed.In this model the production reliability and the warranty length are jointly used as decision variables for the case that products are sold with a warranty i.e. the demand is dependent on the warranty length and sale price.Also all the non-conforming quality defective items in the production process are refurbished to conform to quality ones at a cost. The existence and uniqueness of the optimal values of production reliability and the warranty length are proved by using the Euler-Lagrange method in analyzing the model.A numerical example is also provided to illustrate the effectiveness of the decision model.The sensitivity analysis of the key parameters of the optimal solution and objective value is presented in addition.展开更多
This paper considers an optimal sequential inspection schedule for a second-hand product after that the free nonrenewable warranty is expired. The length of warranty is prespecified and during the warranty period, the...This paper considers an optimal sequential inspection schedule for a second-hand product after that the free nonrenewable warranty is expired. The length of warranty is prespecified and during the warranty period, the product is minimally repaired by the dealer when it fails. Following the expiration of the non-renewing warranty, the product is inspected and upgraded sequentially a fixed number of times at the expenses of the customer.At each inspection, the failure rate of the product is reduced proportionally so that the product is upgraded. The product is assumed to deteriorate as it ages and the replacement of the product occurs when a fixed number of inspections are rendered. In addition,the intervals between two successive inspections are assumed to decrease monotonically. The main objective of this paper is to determine the optimal improvement level to upgrade the product at each inspection so that the expected maintenance cost during the life cycle of the product is minimized from the perspective of the customer. Under the given cost structures, we derive an explicit formula to obtain the expected maintenance cost incurred during the life cycle of the product and discuss the method to find the optimal level of the improvement analytically in case the failure times follow the Weibull distribution. Numerical results are analyzed to observe the impact of relevant parameters on the optimal solution.展开更多
Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new product...Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new products or to some specified level. To make warranty cost models more suitable to real operations, a modeling method of the PM warranty cost was proposed with the situation where each PM operation slowed the rate of product degradation. A warranty cost model was built on PM operations. On the basis of the cost model, both without and with reliability limit PM warranty policy, algorithms were presented to derive the optimal PM number and the optimal PM interval with an objective of minimizing expected total warranty cost over a t'mite warranty period. Finally, to demonstrate the feasibility of the presented modeling method, Weibuil distribution cases were tested by numerical simulations. The simulation results indicate that the proposed modeling method is feasible and valid for resolving the optimal solution of the product warranty cost.展开更多
基金supported by the National Natural Science Foundation of China(71871219).
文摘During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.
文摘Extended warranty has recently obtained increasing attention from both manufacturers and customers in China. In this paper,given the reality of China, two types of non-renewing extended warranty were proposed: one-dimensional extended warranty and two-dimensional extended warranty. And a combined warranty policy including pro-rata warranty policy and free-repair warranty policy was applied in these two types of warranty. Then the expected life-cycle cost models from the manufacturer and consumer's perspectives were developed considering different maintenance options. The optimal warranty policy, maintenance options,and warranty price were adopted in terms of a win-win interval which was determined by the maximum extra cost the consumer should pay and the minimum price the manufacture should sell at the extended warranty. Finally,a case study was given to prove the effectiveness and validity of the model.
基金supported by the National Natural Science Foundation of China(7147114771631001)+1 种基金the Basic Research Project of Natural Science in Shaanxi Province(2015JQ7273)the 111 Project(B13044)
文摘The reliability of the product sold under a warranty is usually maintained by the manufacturer during the warranty period. After the expiry of the warranty, however, the consumer confronts a problem about how to maintain the reliability of the product. This paper proposes, from the consumer's perspective, a replacement policy after the extended warranty, under the assumption that the product is sold under the renewable free replacement warranty (RFRW) policy in which the replacement is dependent on the repair-cost threshold. The proposed replacement policy is the replacement after the extended warranty is performed by the consumer based on the repair-cost threshold or preventive replacement (PR) age, which are decision variables. The expected cost rate model is derived from the consumer's perspective. The existence and uniqueness of the optimal solution that minimizes the expected cost rate per unit time are offered. Finally, a numerical example is presented to exemplify the proposed model.
基金The National Natural Science Foundation of China(No.71171049)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13-097)
文摘A decision model to maximize the total profit of manufacturers in an imperfect production system is constructed.In this model the production reliability and the warranty length are jointly used as decision variables for the case that products are sold with a warranty i.e. the demand is dependent on the warranty length and sale price.Also all the non-conforming quality defective items in the production process are refurbished to conform to quality ones at a cost. The existence and uniqueness of the optimal values of production reliability and the warranty length are proved by using the Euler-Lagrange method in analyzing the model.A numerical example is also provided to illustrate the effectiveness of the decision model.The sensitivity analysis of the key parameters of the optimal solution and objective value is presented in addition.
基金supported by the Research Base Construction Fund Support Program funded by Chonbuk National University in 2013the Mid-career Research Program(2016R1A2B4010080)through NRF Grant funded by MEST
文摘This paper considers an optimal sequential inspection schedule for a second-hand product after that the free nonrenewable warranty is expired. The length of warranty is prespecified and during the warranty period, the product is minimally repaired by the dealer when it fails. Following the expiration of the non-renewing warranty, the product is inspected and upgraded sequentially a fixed number of times at the expenses of the customer.At each inspection, the failure rate of the product is reduced proportionally so that the product is upgraded. The product is assumed to deteriorate as it ages and the replacement of the product occurs when a fixed number of inspections are rendered. In addition,the intervals between two successive inspections are assumed to decrease monotonically. The main objective of this paper is to determine the optimal improvement level to upgrade the product at each inspection so that the expected maintenance cost during the life cycle of the product is minimized from the perspective of the customer. Under the given cost structures, we derive an explicit formula to obtain the expected maintenance cost incurred during the life cycle of the product and discuss the method to find the optimal level of the improvement analytically in case the failure times follow the Weibull distribution. Numerical results are analyzed to observe the impact of relevant parameters on the optimal solution.
基金National Natural Science Foundation of China(No.60574054No.70771065No.70671065)
文摘Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new products or to some specified level. To make warranty cost models more suitable to real operations, a modeling method of the PM warranty cost was proposed with the situation where each PM operation slowed the rate of product degradation. A warranty cost model was built on PM operations. On the basis of the cost model, both without and with reliability limit PM warranty policy, algorithms were presented to derive the optimal PM number and the optimal PM interval with an objective of minimizing expected total warranty cost over a t'mite warranty period. Finally, to demonstrate the feasibility of the presented modeling method, Weibuil distribution cases were tested by numerical simulations. The simulation results indicate that the proposed modeling method is feasible and valid for resolving the optimal solution of the product warranty cost.