An insulate to metal transition was investigated based on the measurements of the dependence of the conductivity, activation energy on the protonation state of polyaniline (PANI). An isotropy in conductivity for stret...An insulate to metal transition was investigated based on the measurements of the dependence of the conductivity, activation energy on the protonation state of polyaniline (PANI). An isotropy in conductivity for stretched salt form of PANI was observed.For salt film of PANI, the Ⅰ-Ⅴ curve obeys Ohm's law, which shows a typical metal behavior, however, for base film or film with low protonation state, it can be explained by Space Charge Limited Current (SCLC). It is also found that the Ⅰ-Ⅴ curve of base film of PANI is independent of the work function of electrodes and the polymerization temperature.展开更多
Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_...Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.展开更多
Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-unifo...Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-uniform thickness of unprocessed CVD diamond films make it difficult to meet the application requirement.The current study evaluates several existing polishing methods for CVD diamond films,including mechanical polishing,chemical mechanical polishing and tribochemical polishing technology.展开更多
Blue-green electroluminescence has been observed in free-standing diamond films which were deposited by microwave plasma assisted CVD on silicon substrates.The electroluminescence device is driven by a 60 Hz power sup...Blue-green electroluminescence has been observed in free-standing diamond films which were deposited by microwave plasma assisted CVD on silicon substrates.The electroluminescence device is driven by a 60 Hz power supply.The threshold voltage was about 112 V peak-to-peak.The electroluminescence spectrum at room temperature,showed a blue-green band with the peak centered at 485nm suggesting band A type emission.Electroluminescence was also observed at 77K.展开更多
Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering paramet...Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering parameters, such as power, gas pressure and sputtering plasma composition of Ar-to-O2, on the properties of ZnO thin films was investigated in detail. X-ray diffraction (XRD) measurements showed that, at a sputtering power of 200 W, gas pressure of 0.5 Pa and an Ar-to- O2 composition of 1:1, a higher intensity of the (002) diffraction peak and a narrower full width at half maximum (FWHM) were detected which meant high c-axis orientation and high quality of the ZnO films. To improve the quality of the ZnO film, a thin ZnO layer was pre-grown as a homo-buffer layer. XRD measurements showed that this buffer layer had a beneficial effect on the structural and morphological properties of the post-grown ZnO film.展开更多
Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is kno...Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is known to inhibit the nucleation of diamond and enhance the formation of graphite, we were able to grow relatively thick films (-1.2 mm). The films were easily detachable from the substrates. The poor adhesion made it possible to obtain free-standing diamond films without chemical etching. Raman spectroscopy showed the 1332 cm^-1 characteristic Raman peak of diamond and the 1580 cm^-1, 1350 cm^-1 bands of graphite on the growth surface and backside of the films, respectively. By energy dispersive X-ray spectroscopy it was only possible to detect iron on the back of the films, but not on the surface. The role of iron in the film growth is discussed.展开更多
Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrop...Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.展开更多
Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. Th...Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. The thickness, morphology and composite phase of Ti interlayers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The titanium carbide (TiC) was detected in both sides of the interlayers, which played an important role with respect to reasonable adhesion with film and diamond nucleation. The semi-translucent diamond films were characterized by SEM and Raman spectrum. The sharp diamond peak with low intensity of amorphous carbon shows that diamond films have very high quality. The overall results suggest that plating Ti interlayer on graphite substrate is an effective way to obtain optical grade free-standing diamond films.展开更多
Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diam...Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diamond films by photolithography technique. Then piezoelectric ZnO films were deposited by radio-frequency(RF) reactive magnetron sputtering to obtain the ZnO/diamond film structures. Surface morphologies of the nucleation sides and the IDTs were characterized by means of scanning electron microscopy (SEM), atomic force microscope (AFM) and optical microscopy. The results indicate that the surfaces of nucleation sides are very smooth and the IDTs are of high quality without discontinuity and short circuit phenomenon. Raman spectra show the sharp diamond feature peak at about 1 334 cm?1 and the small amount of non-diamond carbon in the nucleation side. X-ray diffraction (XRD) patterns of the structure of ZnO/diamond films show a strong diffraction peak of ZnO (002), which indicates that as-sputtered ZnO films are highly c-axis oriented.展开更多
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe...Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.展开更多
Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittan...Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedde...Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization(iMAG),while the intrinsic structural integrity of the carbon aerogels was maintained.The homogenously distributed minerals simultaneously acted as a hard template,activating agent,and graphitization catalyst.The decomposition of the homogenously distributed CaCO_(3)during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance.At 0.5 mA cm^(-2),the gravimetric capacitance increased from 0.01 F g^(-1)without mineralization to 322 F g^(-1)with iMAG,which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes.An outstanding cycling stability of~104%after 1000 cycles in 1 M HClO4 was demonstrated.The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g^(-1)and a high energy density of 26 W h kg^(-1)at a power density of 4000 W kg^(-1),with excellent cycling performance(98.5%retention after 2000 cycles).In combination with the proposed 3D printed mold-assisted solution casting(3DMASC),iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes.Furthermore,the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design,dimensions,and pore size distribution for specific energy storage applications.展开更多
Doped HfO_(2)-based ferroelectric(FE)films are emerging as leading contenders for next-generation FE nonvolatile memories due to their excellent compatibility with complementary metal oxide semiconductor processes and...Doped HfO_(2)-based ferroelectric(FE)films are emerging as leading contenders for next-generation FE nonvolatile memories due to their excellent compatibility with complementary metal oxide semiconductor processes and robust ferroelectricity at nanoscale dimensions.Despite the considerable attention paid to the FE properties of HfO_(2)-based films in recent years,enhancing their polarization switching speed remains a critical research challenge.We demonstrate the strong ferroelectricity of sub-10nm Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films and show that the polarization switching speed of these thin films can be significantly affected by HZO thickness and anisotropically strained La_(0.67)Sr_(0.33)MO_(3)-buffered layer.Our observations indicate that the HZO thin film thickness and anisotropically strained La_(0.67)Sr_(0.33)MO_(3)layer influence the nucleation of reverse domains by altering the phase composition of the HZO thin film,thereby reducing the polarization switching time.Although the increase in HZO thickness and anisotropic compressive strain hinder the formation of the FE phase,they can enable faster switching.Our findings suggest that FE HZO ultrathin films with polar orthorhombic structures have broad application prospects in microelectronic devices.These insights into novel methods for increasing polarization switching speed are poised to advance the development of high-performance FE devices.展开更多
Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-size...Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).展开更多
Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La...Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.展开更多
The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that af...The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.展开更多
Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As...Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.展开更多
BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric p...BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.展开更多
Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean...Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.展开更多
文摘An insulate to metal transition was investigated based on the measurements of the dependence of the conductivity, activation energy on the protonation state of polyaniline (PANI). An isotropy in conductivity for stretched salt form of PANI was observed.For salt film of PANI, the Ⅰ-Ⅴ curve obeys Ohm's law, which shows a typical metal behavior, however, for base film or film with low protonation state, it can be explained by Space Charge Limited Current (SCLC). It is also found that the Ⅰ-Ⅴ curve of base film of PANI is independent of the work function of electrodes and the polymerization temperature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572033,51572241,61774019,61704153,and 11404029)the Fund of State Key Laboratory of IPOC(BUPT)+1 种基金the Open Fund of IPOC(BUPT)Beijing Municipal Commission of Science and Technology,China(Grant No.SX2018-04)
文摘Flexible electronic devices have attracted much attention due to their practical and commercial value. Integration of thin films with soft substrate is an effective way to fabricate flexible electronic devices. Ga_2O_3 thin films deposited directly on soft substrates would be amorphous mostly. However, the thickness of the thin film obtained by mechanical exfoliation method is difficult to control and the edge of the film is fragile and easy to be damaged. In this work, we fabricated free-standing Ga_2O_3 thin films using the water-soluble perovskite Sr_3Al_2O_6 as a sacrificial buffer layer. The obtained Ga_2O_3 thin films were polycrystalline. The thickness and dimension of the films were controllable. A flexible Ga_2O_3solar-blind UV photodetector was fabricated by transferring the free-standing Ga_2O_3 film on a flexible polyethylene terephthalate substrate. The results displayed that the photoelectric performances of the flexible Ga_2O_3 photodetector were not sensitive to bending of the device. The free-standing Ga_2O_3 thin films synthesized through the method described here can be transferred to any substrates or integrated with other thin films to fabricate electronic devices.
基金Science and technology plan project of Hebei Academy of Sciences(No.191408)Natural Science Foundation of Hebei Province(E2019302005)
文摘Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-uniform thickness of unprocessed CVD diamond films make it difficult to meet the application requirement.The current study evaluates several existing polishing methods for CVD diamond films,including mechanical polishing,chemical mechanical polishing and tribochemical polishing technology.
基金the National Natural Science Foundation of China,and the Natural Science Foundation of He'nan province.
文摘Blue-green electroluminescence has been observed in free-standing diamond films which were deposited by microwave plasma assisted CVD on silicon substrates.The electroluminescence device is driven by a 60 Hz power supply.The threshold voltage was about 112 V peak-to-peak.The electroluminescence spectrum at room temperature,showed a blue-green band with the peak centered at 485nm suggesting band A type emission.Electroluminescence was also observed at 77K.
基金National Natural Science Foundation of China (Nos.60577040,60877017)Program for Changjiang Scholars,Innovative Research Team in University of China (No.IRT0739)+1 种基金Innovation Program of Shanghai Municipal Education Commission of China (08YZ04)Shanghai Leading Academic Disciplines of China (S30107)
文摘Highly c-axis-oriented ZnO films were deposited successfully on the nucleation sides of free-standing diamond (FD) films by the direct current (DC) magnetron sputtering method. The effect of the sputtering parameters, such as power, gas pressure and sputtering plasma composition of Ar-to-O2, on the properties of ZnO thin films was investigated in detail. X-ray diffraction (XRD) measurements showed that, at a sputtering power of 200 W, gas pressure of 0.5 Pa and an Ar-to- O2 composition of 1:1, a higher intensity of the (002) diffraction peak and a narrower full width at half maximum (FWHM) were detected which meant high c-axis orientation and high quality of the ZnO films. To improve the quality of the ZnO film, a thin ZnO layer was pre-grown as a homo-buffer layer. XRD measurements showed that this buffer layer had a beneficial effect on the structural and morphological properties of the post-grown ZnO film.
文摘Free-standing diamond films have been successfully deposited on stainless steel substrates using microwave plasma-assisted chemical vapor deposition. Although iron, which is the main element of stainless steel, is known to inhibit the nucleation of diamond and enhance the formation of graphite, we were able to grow relatively thick films (-1.2 mm). The films were easily detachable from the substrates. The poor adhesion made it possible to obtain free-standing diamond films without chemical etching. Raman spectroscopy showed the 1332 cm^-1 characteristic Raman peak of diamond and the 1580 cm^-1, 1350 cm^-1 bands of graphite on the growth surface and backside of the films, respectively. By energy dispersive X-ray spectroscopy it was only possible to detect iron on the back of the films, but not on the surface. The role of iron in the film growth is discussed.
基金Projects(21361020,21061012)supported by the National Natural Science Foundation of ChinaProject(NZ12156)supported by the Natural Science Foundation of Ningxia,ChinaProject(N-09-13)supported by Project of State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics of the Chinese Academy of Sciences
文摘Electrophoretic deposition in conjunction with electrochemical reduction was used to make flexible free-standing graphene-like films. Firstly, graphene oxide (GO) film was deposited on graphite substrate by electrophoretic deposition method, and then reduced by subsequent electrochemical reduction of GO to obtain reduced GO (ERGO) film with high electrochemical performance. The morphology, structure and electrochemical performance of the prepared graphene-like film were confirmed by SEM, XRD and FT-IR. These unique materials were found to provide high specific capacitance and good cycling stability. The high specific capacitance of 254 F/g was obtained from cyclic voltammetry measurement at a scan rate of 10 mV/s. When the current density increased to 83.3 A/g, the specific capacitance values still remained 132 F/g. Meanwhile, the high powder density of 39.1 kW/kg was measured at energy density of 11.8 W-h/kg in 1 mol/L H2SO4 solution. Furthermore, at a constant scan rate of 50 mV/s, 97.02% of its capacitance was retained for 1000 cycles. These promising results were attributed to the unique assembly structure of graphene film and low contact resistance, which indicated their potential application to electrochemical capacitors.
基金financially supported by the Graduate Student Foundation of University of Science and Technology BeijingNational Natural Science Foundation of China
文摘Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. The thickness, morphology and composite phase of Ti interlayers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The titanium carbide (TiC) was detected in both sides of the interlayers, which played an important role with respect to reasonable adhesion with film and diamond nucleation. The semi-translucent diamond films were characterized by SEM and Raman spectrum. The sharp diamond peak with low intensity of amorphous carbon shows that diamond films have very high quality. The overall results suggest that plating Ti interlayer on graphite substrate is an effective way to obtain optical grade free-standing diamond films.
基金Projects(60577040) supported by the National Natural Science Foundation of China Project(0404) supported by the Shanghai Foundation of Applied Materials Research and Development+1 种基金 Projects(0452nm051, 05nm05046) supported by the Nano-technology Project of Shanghai Project(T0101) supported by the Shanghai Leading Academic Disciplines
文摘Free-standing diamond films were prepared by hot filament chemical vapor deposition (HFCVD) method under different conditions. Inter-digital transducers (IDTs) were formed on the nucleation sides of free-standing diamond films by photolithography technique. Then piezoelectric ZnO films were deposited by radio-frequency(RF) reactive magnetron sputtering to obtain the ZnO/diamond film structures. Surface morphologies of the nucleation sides and the IDTs were characterized by means of scanning electron microscopy (SEM), atomic force microscope (AFM) and optical microscopy. The results indicate that the surfaces of nucleation sides are very smooth and the IDTs are of high quality without discontinuity and short circuit phenomenon. Raman spectra show the sharp diamond feature peak at about 1 334 cm?1 and the small amount of non-diamond carbon in the nucleation side. X-ray diffraction (XRD) patterns of the structure of ZnO/diamond films show a strong diffraction peak of ZnO (002), which indicates that as-sputtered ZnO films are highly c-axis oriented.
基金supported by the National Natural Science Foundation of China(Nos.52277024,U20A20308)Natural Science Foundation of Heilongjiang Province(No.YQ2020E031)+3 种基金China Postdoctoral Science Foundation(Nos.2021T140166,2018M640303)Heilongjiang Province Postdoctoral Science Foundation(No.LBH-Z18099)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020178)the support from the China Scholarship Council(CSC)
文摘Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.523712475,2072415 and 62101352)Shenzhen Science and Technology Program(RCBS20210706092343016).
文摘Despite the growing demand for transparent conductive films in smart and wearable electronics for electromagnetic interference(EMI)shielding,achieving a flexible EMI shielding film,while maintaining a high transmittance remains a significant challenge.Herein,a flexible,transparent,and conductive copper(Cu)metal mesh film for EMI shielding is fabricated by self-forming crackle template method and electroplating technique.The Cu mesh film shows an ultra-low sheet resistance(0.18Ω□^(-1)),high transmittance(85.8%@550 nm),and ultra-high figure of merit(>13,000).It also has satisfactory stretchability and mechanical stability,with a resistance increases of only 1.3%after 1,000 bending cycles.As a stretchable heater(ε>30%),the saturation temperature of the film can reach over 110°C within 60 s at 1.00 V applied voltage.Moreover,the metal mesh film exhibits outstanding average EMI shielding effectiveness of 40.4 dB in the X-band at the thickness of 2.5μm.As a demonstration,it is used as a transparent window for shielding the wireless communication electromagnetic waves.Therefore,the flexible and transparent conductive Cu mesh film proposed in this work provides a promising candidate for the next-generation EMI shielding applications.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
基金financially supported by the European Research Council under the Horizon 2020 framework programme(Grant No.772370-PHOENEEX)
文摘Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization(iMAG),while the intrinsic structural integrity of the carbon aerogels was maintained.The homogenously distributed minerals simultaneously acted as a hard template,activating agent,and graphitization catalyst.The decomposition of the homogenously distributed CaCO_(3)during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance.At 0.5 mA cm^(-2),the gravimetric capacitance increased from 0.01 F g^(-1)without mineralization to 322 F g^(-1)with iMAG,which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes.An outstanding cycling stability of~104%after 1000 cycles in 1 M HClO4 was demonstrated.The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g^(-1)and a high energy density of 26 W h kg^(-1)at a power density of 4000 W kg^(-1),with excellent cycling performance(98.5%retention after 2000 cycles).In combination with the proposed 3D printed mold-assisted solution casting(3DMASC),iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes.Furthermore,the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design,dimensions,and pore size distribution for specific energy storage applications.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFA1406404 and 2020YFA0309100)the National Natural Science Foundation of China(Grant Nos.12074365,12374094,12304153,U2032218,and 11974326),the National Natural Science Foundation of China(Grant No.12274120)+4 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084)the Fundamental Research Funds for the Central Universities(Grant Nos.WK9990000102 and WK2030000035)Anhui Provincial Natural Science Foundation(Grant No.2308085MA15)Hefei Science Center CAS Foundation(Grant Nos.2021HSC-CIP017 and 2016HSC-IU06)the China Postdoctoral Science Foundation(Grant No.2022M713060)。
文摘Doped HfO_(2)-based ferroelectric(FE)films are emerging as leading contenders for next-generation FE nonvolatile memories due to their excellent compatibility with complementary metal oxide semiconductor processes and robust ferroelectricity at nanoscale dimensions.Despite the considerable attention paid to the FE properties of HfO_(2)-based films in recent years,enhancing their polarization switching speed remains a critical research challenge.We demonstrate the strong ferroelectricity of sub-10nm Hf_(0.5)Zr_(0.5)O_(2)(HZO)thin films and show that the polarization switching speed of these thin films can be significantly affected by HZO thickness and anisotropically strained La_(0.67)Sr_(0.33)MO_(3)-buffered layer.Our observations indicate that the HZO thin film thickness and anisotropically strained La_(0.67)Sr_(0.33)MO_(3)layer influence the nucleation of reverse domains by altering the phase composition of the HZO thin film,thereby reducing the polarization switching time.Although the increase in HZO thickness and anisotropic compressive strain hinder the formation of the FE phase,they can enable faster switching.Our findings suggest that FE HZO ultrathin films with polar orthorhombic structures have broad application prospects in microelectronic devices.These insights into novel methods for increasing polarization switching speed are poised to advance the development of high-performance FE devices.
基金supported by the National Natural Science Foundation of China(Grant No.12241403)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140054)。
文摘Fe_(3)GaTe_(2),as a layered ferromagnetic material,has a Curie temperature(T_(c))higher than room temperature,making it the key material in next-generation spintronic devices.To be used in practical devices,large-sized high-quality Fe_(3)GaTe_(2)thin films need to be prepared.Here,the centimeter-scale thin film samples with high crystal quality and above-room-temperature ferromagnetism with strong perpendicular magnetic anisotropy were prepared by molecular beam epitaxy technology.Furthermore,the Tc of the samples raises as the film thickness increases,and reaches 367K when the film thickness is 60 nm.This study provides material foundations for the new generation of van der Waals spintronic devices and paves the way for the commercial application of Fe_(3)GaTe_(2).
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1403000)the Na-tional Natural Science Foundation of China(Grant No.12250710675).
文摘Exploring dimensionality effects on cuprates is important for understanding the nature of high-temperature superconductivity.By atomically layer-by-layer growth with oxide molecular beam epitaxy,we demonstrate that La_(2−x)Sr_(x)CuO_(4)(x=0.15)thin films remain superconducting down to 2 unit cells of thickness but quickly reach the maximum superconducting transition temperature at and above 4 unit cells.By fitting the critical magnetic field(μ0H_(c2)),we show that the anisotropy of the film’s superconductivity increases with decreasing film thickness,indicating that the superconductivity of the film gradually evolves from weak three-to two-dimensional character.These results are helpful to gain more insight into the nature of high-temperature superconductivity with dimensionality.
基金We thank the National Natural Science Foundation of China(52203217 and 21961160720)the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)for financial support.
文摘The high efficiency,solution processibility,and flexibility of perovskite solar cells make them promising candidates for the photovoltaic industry[1−8].The deposition method is one of the most critical factors that affect the performance of perovskite films.Various deposition methods have been developed to make perovskite films,including spin-coating,slotdie coating.
基金the financial support from the National Key Research and Development Program of China(No.2017YFB0305500)the State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Pure cobalt(Co)thin films were fabricated by direct current magnetron sputtering,and the effects of sputtering power and pres-sure on the microstructure and electromagnetic properties of the films were investigated.As the sputtering power increases from 15 to 60 W,the Co thin films transition from an amorphous to a polycrystalline state,accompanied by an increase in the intercrystal pore width.Simultaneously,the resistivity decreases from 276 to 99μΩ·cm,coercivity increases from 162 to 293 Oe,and in-plane magnetic aniso-tropy disappears.As the sputtering pressure decreases from 1.6 to 0.2 Pa,grain size significantly increases,resistivity significantly de-creases,and the coercivity significantly increases(from 67 to 280 Oe),which can be attributed to the increase in defect width.Corres-pondingly,a quantitative model for the coercivity of Co thin films was formulated.The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy,which is primarily attributable to increased microstress.
基金supported by the National Natural Science Foundation of China(No.22371013)the National Key Research and Development Program of China(No.2018YFA0703700)+3 种基金the Fundamental Research Funds for the Central Universities,China(Nos.FRF-IDRY-19-007 and FRF-TP-19-055A2Z)the National Program for Support of Top-notch Young Professionals,Chinathe Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(CAST),China(No.2019-2021 QNRC)the“Xiaomi Young Scholar”Funding Project,China.
文摘BiFeO_(3)(BFO)has received considerable attention as a lead-free ferroelectric film due to its large theoretical remnant polariza-tion.However,BFO suffers from a large leakage current,resulting in poor ferroelectric properties.Herein,the sol-gel method was used to deposit a series of BFO-based thin films on fluorine-doped tin oxide substrates,and the effects of the substitution of the elements Co,Cu,Mn(B-site)and Sm,Eu,La(A-site)on the crystal structure,ferroelectricity,and leakage current of the BFO-based thin films were invest-igated.Results confirmed that lattice distortion by X-ray diffraction can be attributed to the substitution of individual elements in the BFO-based films.Sm and Eu substitutions contribute to the lattice distortion in a pseudo-cubic structure,while La is biased toward pseudo-tet-ragonal.Piezoelectric force microscopy confirmed that reversible switching of ferroelectric domains by nearly 180°can be realized through the prepared films.The ferroelectric hysteresis loops showed that the order for the polarization contribution is as follows:Cu>Co>Mn(B-site),Sm>La>Eu(A-site).The current density voltage curves indicated that the order for leakage contribution is as follows:Mn<Cu<Co(B-site),La<Eu<Sm(A-site).Scanning electron microscopy showed that the introduction of Cu elements facilitates the formation of dense grains,and the grain size distribution statistics proved that La element promotes the reduction of grain size,leading to the increase of grain boundaries and the reduction of leakage.Finally,a Bi_(0.985)Sm_(0.045)La_(0.03)Fe_(0.96)Co_(0.02)Cu_(0.02)O_(3)(SmLa-CoCu)thin film with a qualitative leap in the remnant polarization from 25.5(Bi_(0.985)Sm_(0.075)FeO_(3))to 98.8µC/cm^(2)(SmLa-CoCu)was prepared through the syner-gistic action of Sm,La,Co,and Cu elements.The leakage current is also drastically reduced from 160 to 8.4 mA/cm^(2)at a field strength of 150 kV/cm.Thus,based on the increasing entropy strategy of chemical engineering,this study focuses on enhancing ferroelectricity and decreasing leakage current,providing a promising path for the advancement of ferroelectric devices.
基金Project supported by the Fundamental Research Fund for the Central Universities of Chinathe Research Project for Independently Cultivate Talents of Hebei Agricultural University (Grant No.ZY2023007)。
文摘Combining the mean field Pozhar-Gubbins(PG)theory and the weighted density approximation,a novel method for local thermal conductivity of inhomogeneous fluids is proposed.The correlation effect that is beyond the mean field treatment is taken into account by the simulation-based empirical correlations.The application of this method to confined argon in slit pore shows that its prediction agrees well with the simulation results,and that it performs better than the original PG theory as well as the local averaged density model(LADM).In its further application to the nano-fluidic films,the influences of fluid parameters and pore parameters on the thermal conductivity are calculated and investigated.It is found that both the local thermal conductivity and the overall thermal conductivity can be significantly modulated by these parameters.Specifically,in the supercritical states,the thermal conductivity of the confined fluid shows positive correlation to the bulk density as well as the temperature.However,when the bulk density is small,the thermal conductivity exhibits a decrease-increase transition as the temperature is increased.This is also the case in which the temperature is low.In fact,the decrease-increase transition in both the small-bulk-density and low-temperature cases arises from the capillary condensation in the pore.Furthermore,smaller pore width and/or stronger adsorption potential can raise the critical temperature for condensation,and then are beneficial to the enhancement of the thermal conductivity.These modulation behaviors of the local thermal conductivity lead immediately to the significant difference of the overall thermal conductivity in different phase regions.