The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydro...The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.展开更多
Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bendin...Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions.展开更多
Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ...Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.展开更多
The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of intern...The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed.展开更多
The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock durin...The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value.展开更多
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water conten...Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.展开更多
This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and...This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and nutrient losses, and potential influencing factors under freeze-thaw(FT) conditions. Three FT treatments(i.e., 0, 3, and 5 FT cycles), and two soil moisture contents(SMCs;i.e., 10% and 20% SMC on a gravimetric basis) were assessed. The runoff, sediment yield, ammonia nitrogen(AN), nitrate nitrogen(NN), total phosphorus(TP), and dissolved phosphorus(DP) losses from runoff were characterized under different rainfall durations. The fitting results indicated that the runoff rate and sediment rate, AN, NN, TP, and DP concentrations in runoff could be described by exponential functions. FT action increased the total runoff volume and sediment yield by 14.6%–26.0% and 8.8%–35.2%, respectively. The runoff rate and sediment rate increased rapidly with the increment of FT cycles before stabilizing. At 20% SMC, the total runoff volume and sediment yield were significantly higher than those at 10% SMC. The loss curves of AN and NN concentrations varied due to differences in their chemical properties. FT action and high SMC promoted AN and NN losses, whereas the FT cycles had little effect. FT action increased TP and DP losses by 60.2%–220.1% and 48.4%–129.8%, respectively, compared to cases with no FT action;the highest TP and DP losses were recorded at 20% SMC. This study provides a deep understanding of freezing-thawing mechanisms in the soils of alpine mine restoration areas and the influencing factors of these mechanisms on soil erosion, thereby supporting the development of erosion prevention and control measures in alpine mine restoration areas.展开更多
Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size ...Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.展开更多
Research on the stability of soil slopes in seasonally frozen regions has mainly focused on slope failures during the thawing window.There are few studies on slope stability during the freezing window and its subseque...Research on the stability of soil slopes in seasonally frozen regions has mainly focused on slope failures during the thawing window.There are few studies on slope stability during the freezing window and its subsequent influence on slope failure in the next thawing window.In this paper,soil strength was tested during freezing and thawing to obtain temperature-dependent strength parameters for the simulation of slope stability.Then,the slope's temperature field over an entire year was accurately simulated so that characteristics of the frozen layer could be determined at any time.Based on the above results,the progressive failure modes of frozen soil slopes are discussed.The results show that:1)during the freezing window,depth of the frozen soil layer increases,as does the slope's safety factor,while a yield zone propagates towards the slope shoulder.(2)During the thawing window,the frozen soil layer shrinks in depth while the yield zone continuously expands,which decreases the safety factor.Comprehensive analysis of these results indicate that the frozen layer provides a“toe-locking effect”that increases the safety factor during the freezing window,while it also provides a“dragging effect”that propagates the yield zone towards the slope shoulder.During the thawing window,the“toe-locking effect”gradually diminishes;a continuous sliding surface is formed,which lead to a landslide.The frozen soil layer of the freezing window accelerates the slope sliding in the thawing window.展开更多
Objective: To investigate the factors that might influence the success of an embryo freezing and thawing program. Method: The relationship between the pregnancy rate in 73 cycles of embryo freezing and thawing progr...Objective: To investigate the factors that might influence the success of an embryo freezing and thawing program. Method: The relationship between the pregnancy rate in 73 cycles of embryo freezing and thawing program and the following factors was analyzed: maternal age, E 2 level at the time of HCG trigger, embryo storage time, number of thawed embryos transferred, presence of sponsoring embryos and intact embryos. And the survival rate of thawed embryos with different morphology, cell stage and storage time was evaluated. Result: Transfer with three or more than three thawed embryos resulted in pregnancy rates of 38.5% and 35.7%, respectively, compared with 5.3% for transfer of fewer than three embryos. The presence of sponsoring embryos and intact embryos significantly increases pregnancy rate in embryo freezing and thawing program. No other factor examined had any effect on pregnancy outcome. The survival rate of good morphology embryos was higher than poor ones, but was not influenced by cell stage and storage time. Conclusion: Embryo morphology before freezing, number of thawed embryos transferred and the presence of intact embryos are important to the outcome of embryo freezing and thawing program.展开更多
The relations of change rate of an independent variable, volumetric strain of the porous skeleton, with the change rates of a kind of constitutive variables, such as porosity, volumetric strain of the solid matrix, ar...The relations of change rate of an independent variable, volumetric strain of the porous skeleton, with the change rates of a kind of constitutive variables, such as porosity, volumetric strain of the solid matrix, are derived from the definition of the porosity of water saturated porous media; and the relations of the change rates of another two independent variables, pressure of the pore liquid water and temperature, with the change rates of another kind of constitutive variables, such as pressure of the pore ice, average pressure of the pore liquid water and ice, and average stress of the solid matrix, are obtained from the Clausius Clapeyron relation in the process of freezing or thawing, definitions of the average pore pressure and effective stress. Based on the hypothesis of linear thermoelasticity, principle of effective stress and these relations, the change rates of all constitutive variables may be described with the change rates of the three independent variables.展开更多
Resistance to freezing and thawing of two UHSC (ultra high strength concrete) mixtures was evaluated in accordance with ASTM C 666 Procedure A. The two mixtures (plain and fiber reinforced) were developed using ma...Resistance to freezing and thawing of two UHSC (ultra high strength concrete) mixtures was evaluated in accordance with ASTM C 666 Procedure A. The two mixtures (plain and fiber reinforced) were developed using materials local to southern New Mexico, USA. Three different curing regimens were investigated for the mixture with fibers and one curing regimen was studied for the mixture without fibers. All curing regimens included 24 h of ambient curing followed by four days of wet curing at 50 ℃, and then two days dry curing at 200 ℃. At an age of seven days, one batch of fiber reinforced specimens was air cured at ambient conditions for the following six days and then placed in a water bath at 4.4 ℃ for 24 h prior to initiating freezing and thawing cycles. The second batch was air cured from day seven to day 12, and then wet cured for one day at 23 ℃ prior to being placed in the 4.4 ℃ water bath. The final batch was wet cured at 23 ℃ from the seventh day to an age of 13 days and then placed in the 4.4 ℃ water bath. The mixture with no fibers was air cured from the seventh day to an age of 12 days and then wet cured for one day at 23 ℃ prior to being placed in the 4.4 ℃ water bath. Higher moisture levels during curing produced greater initial dynamic elastic modulus values and durability factors at the end of the freezing and thawing tests, with the greatest durability factor being 87.5. Steel fibers were observed to improve both compressive strength and durability factor for UHSC.展开更多
Annual freezing and thawing index of 7 meteorological stations along the Qing- hai-Xizang Railway were calculated based on daily maximum and minimum temperature records for 1966-2004. Trends of annual freezing and tha...Annual freezing and thawing index of 7 meteorological stations along the Qing- hai-Xizang Railway were calculated based on daily maximum and minimum temperature records for 1966-2004. Trends of annual freezing and thawing index were analyzed using the Mann-Kendall test and a simple linear regression method. The results show that: 1) The mean annual freezing indices range from 95 to 2300℃·d and the mean annual thawing indices range from 630 to 3250℃·d. The mean annual freezing index of the 7 stations exhibited decreasing trends with decreasing rate of -16.6- -59.1 ℃·d/10a. The mean annual thawing index of these 7 stations showed increasing trends with the related decreasing rate is 19.83-45.6℃·d/10a. 2) The MK trend test indicated the significant decreasing trends (significant at 〈 0.05 significant level) in the annual freezing index for most stations except for Golmud. The significant increasing trends can be observed in the annual thawing index for 4 stations except Golmud and Tuotuohe. Golmud was the only station with no trends in both annual freezing and annual thawing index.展开更多
Polyvinyl alcohol(PVA) physiological saline gel was prepared using physiological saline solution of the polymer by freezing and thawing method. The influences of the concentration of PVA, freezing and thawing cycle ti...Polyvinyl alcohol(PVA) physiological saline gel was prepared using physiological saline solution of the polymer by freezing and thawing method. The influences of the concentration of PVA, freezing and thawing cycle times and solvent swelling media on the swelling properties of PVA saline gel were investigated. The result show that the electrolytical ions have great effect on the swelling behavior of PVA saline gel. The equilibrium swelling ratio of PVA saline gel in aqueous swelling media is larger than that in saline swelling media. Also, the equilibrium swelling ratios of PVA saline gel in aqueous and in saline media decrease with the increase of gel concentration and the increase of freezing and thawing cycle times. The decreasing speed of equilibrium swelling ratio with the increase of freezing and thawing cycle times of PVA gel in distilled water is faster than that in physiological saline. The swelling kinetic equation can sufficiently describe the swelling behavior of PVA physiological saline gel.展开更多
Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformati...Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformation, loads and restraints around dam. With time going by, damage to darn concrete happens. As a result, the strength, stiffness and resistance of concrete will decrease accompanying with damage accumulation and dam structure performance behavior and lifetime will be shorten or even destructed. At present, most of researches focus on concrete material itself and seldom consider effects of water content for concrete structures. That is apparently inconsistent with the actual situation. In engineering practice, it is urgently needed to assess existing dam structure damage state considering dry zoning in concrete. Through taking C30 dam concrete as standard specimen, alternate freezing and thawing tests are undertaken and changing law of time-dependent concrete damage state resulting in alternate wetting and drying has been studied in this paper. And then calculation formulas of time-dependent concrete damage evolution process considering alternate wetting and drying under condition of freeze-thaw cycle tests are established. Combining with four parameters Hsieh-Ting-Chen ( H -T-C ) model, some relevant factors or parameters are obtained through indoor testing and life prediction model of concrete dam based on dry zoning and damage theory is put forward which provides technical supports for dam safety evaluation and management of sustainable development.展开更多
This paper explores the conversion of raw seawater into drinking water from a religious water literacy (RWL) perspective. RWL is here defined as a socially just water literacy that is based on the respect for the dign...This paper explores the conversion of raw seawater into drinking water from a religious water literacy (RWL) perspective. RWL is here defined as a socially just water literacy that is based on the respect for the dignity of life of all living beings on the Earth. It discusses the importance of sustainable water sources and proposes purification methods. That is, the study aims to show a brief outline of the drinking water source (inland waters;mainly river water) and their purification technologies in recent times and today and propose the purification method (Freezing-Thawing-UV method) in case of taking the seawater as the source. And, it emphasizes the need for dialogue and cooperation between countries in order to proceed. The paper also discusses the relationship among religion, culture, and civilization, and highlights the similarities between Marx’s historical materialism and Umesao’s ecological view. It further discusses the importance of water purification technology, separation methods, and the potential for seawater as an energy source. The paper concludes by discussing the importance of dialogue, communication and understanding environmental decision-making. In order to carry them forward, it is convinced that citizens in the world are nothing but people with self-awareness of “Bodhisattvas of the Earth” as identities. As a result, the new findings that suggest the possibility of raw seawater into drinking water from a religious water literacy perspective through the lens of Kawakatsu’s maritime view have been obtained.展开更多
Cryodamages occur during sperm cryopreservation. Cryopreservation of fish sperm usually results in marked decrease in sperm quality, such as swelling or disruption of the plasma membrane, mi-tochondrial dysfunction, d...Cryodamages occur during sperm cryopreservation. Cryopreservation of fish sperm usually results in marked decrease in sperm quality, such as swelling or disruption of the plasma membrane, mi-tochondrial dysfunction, diminished sperm motility, impaired velocity, shorter motility period, denatura-tion, and release of some enzymes from spermatozoa. In this paper, damages in morphology, physiology, biochemistry and metabolism, and genetic integrity of fish semen after cryopreservation are discussed. New approaches in assessment of fish thawed sperm quality such as computer assisted sperm analysis, flow cytometic analysis combined with fluorescent probes and single cell gel electrophoresis are also briefly reviewed.展开更多
In the 1960s,sperm cryopreservation was developed as a method to preserve fertility.Currently,techniques for the cryopreservation of human spermatozoa have been widely used in assisted reproduction.However,although sp...In the 1960s,sperm cryopreservation was developed as a method to preserve fertility.Currently,techniques for the cryopreservation of human spermatozoa have been widely used in assisted reproduction.However,although sperm cryobiology has made notable achievements,the optimal method for the recovery of viable spermatozoa after cryopreservation remains elusive.Postthawing sperm quality can be affected by cryoprotectants,ice formation,storage conditions,and osmotic stress during the freezing process.This review discusses recent advances in different cryopreservation techniques,cryoprotectants,and freezing and thawing methods during cryopreservation and new indications for the use of cryopreserved spermatozoa.展开更多
基金This work was jointly funded by the National Natural Science Foundation of China(Grant Nos.42205168,41830967,and 42175163)the Youth Innovation Promotion Association CAS(2021073)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab).
文摘The soil freezing and thawing process affects soil physical properties,such as heat conductivity,heat capacity,and hydraulic conductivity in frozen ground regions,and further affects the processes of soil energy,hydrology,and carbon and nitrogen cycles.In this study,the calculation of freezing and thawing front parameterization was implemented into the earth system model of the Chinese Academy of Sciences(CAS-ESM)and its land component,the Common Land Model(CoLM),to investigate the dynamic change of freezing and thawing fronts and their effects.Our results showed that the developed models could reproduce the soil freezing and thawing process and the dynamic change of freezing and thawing fronts.The regionally averaged value of active layer thickness in the permafrost regions was 1.92 m,and the regionally averaged trend value was 0.35 cm yr–1.The regionally averaged value of maximum freezing depth in the seasonally frozen ground regions was 2.15 m,and the regionally averaged trend value was–0.48 cm yr–1.The active layer thickness increased while the maximum freezing depth decreased year by year.These results contribute to a better understanding of the freezing and thawing cycle process.
基金Funded by the Key Program of National Natural Science Foundation of China (No.50438010)
文摘Mechanical behaviors of UHTCC after freezing and thawing were investigated,and compared with those of steel fiber reinforced concrete(SFRC),air-entrained concrete(AEC) and ordinary concrete(OC).Four point bending tests had been applied after different freezing-thawing cycles(0,50,100,150,200 and 300 cycles,respectively).The results showed that residual flexural strength of UHTCC after 300 freezing-thawing cycles was 10.62 MPa(70% of no freezing thawing ones),while 1.58 MPa(17% of no freezing thawing ones) for SFRC.Flexural toughness of UHTCC decreased by 17%,while 70% for SFRC comparatively.It has been demonstrated experimentally that UHTCC without any air-entraining agent could resist freezing-thawing and retain its high toughness characteristic in cold environment.Consequently,UHTCC could be put into practice for new-built or retrofit of infrastructures in cold regions.
基金Under the auspices of National Natural Science Foundation of China(No.31460117,41877024)。
文摘Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.
文摘The research of the failure criterion and one-dimensional stress-strain relationship of deteriorated concrete were carried out. Based on the damage mechanics theory, the dsmage which reflects the alternation of internal state of material were introduced into the formula presented by Desayi and Krishman and the weighted twin-shear strength theory. As a nondestructive examination method in common use, the ultrasonic technique was adopted in the study, and the ultrasonic velocity was used to establish the damage variable. After that, the failure criterion and one-dimensional stress-strain relationship for deteriorated concrete were obtained. Eventually, tests were carried out to study the evolution laws on the damage. The results show that the more freezing and thawing cycles are, the more apparently the failure surface shrinks. Meanwhile, the comparison between theoretical data and experimental data verifies tile rationality of tile damage-based one-dimensional stress-strain relationship proposed.
基金the support of the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)of China (Grant No.2019QZKK0904)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (Grant No.51922104)+1 种基金Youth Innovation Promotion Association CASOpen Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z018014)。
文摘The unfrozen water content of rock during freezing and thawing has an important influence on its physical and mechanical properties.This study presented a model for calculating the unfrozen water content of rock during freezing and thawing process,considering the influence of unfrozen water film and rock pore structure,which can reflect the hysteresis and super-cooling effects.The pore size distribution cu rves of red sandsto ne and its unfrozen water conte nt under different temperatures during the freezing and thawing process were measured using nuclear magnetic resonance(NMR) to validate the proposed model.Comparison between the experimental and calculated results indicated that the theoretical model accu rately reflected the water content change law of red sandstone during the freezing and thawing process.Furthermore,the influences of Hamaker constant and surface relaxation parameter on the model results were examined.The results showed that the appropriate magnitude order of Hamaker constant for the red sandstone was 10J to 10J;and when the relaxation parameter of the rock surface was within 25-30 μm/ms,the calculated unfrozen water content using the proposed model was consistent with the experimental value.
基金supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW-330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966).
文摘Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.
基金supported by the National Natural Science Foundation of China(U1703244)Bingtuan Science and Technology Program(2021DB019)Science and Technology project of Alar City(2018TF01)。
文摘This study highlights the influence of freezing-thawing processes on soil erosion in an alpine mine restoration area. Accordingly, a series of simulation experiments were conducted to investigate runoff, sediment, and nutrient losses, and potential influencing factors under freeze-thaw(FT) conditions. Three FT treatments(i.e., 0, 3, and 5 FT cycles), and two soil moisture contents(SMCs;i.e., 10% and 20% SMC on a gravimetric basis) were assessed. The runoff, sediment yield, ammonia nitrogen(AN), nitrate nitrogen(NN), total phosphorus(TP), and dissolved phosphorus(DP) losses from runoff were characterized under different rainfall durations. The fitting results indicated that the runoff rate and sediment rate, AN, NN, TP, and DP concentrations in runoff could be described by exponential functions. FT action increased the total runoff volume and sediment yield by 14.6%–26.0% and 8.8%–35.2%, respectively. The runoff rate and sediment rate increased rapidly with the increment of FT cycles before stabilizing. At 20% SMC, the total runoff volume and sediment yield were significantly higher than those at 10% SMC. The loss curves of AN and NN concentrations varied due to differences in their chemical properties. FT action and high SMC promoted AN and NN losses, whereas the FT cycles had little effect. FT action increased TP and DP losses by 60.2%–220.1% and 48.4%–129.8%, respectively, compared to cases with no FT action;the highest TP and DP losses were recorded at 20% SMC. This study provides a deep understanding of freezing-thawing mechanisms in the soils of alpine mine restoration areas and the influencing factors of these mechanisms on soil erosion, thereby supporting the development of erosion prevention and control measures in alpine mine restoration areas.
基金National Basic Research Program of China (2005CB121101, 2005CB121103)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-407)
文摘Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.
基金supported by the National Natural Science Foundation of China (Grant No. 42271148)Open foundation of State Key Laboratory of Frozen Soil Engineering (Grant No. SKLFSE201807)
文摘Research on the stability of soil slopes in seasonally frozen regions has mainly focused on slope failures during the thawing window.There are few studies on slope stability during the freezing window and its subsequent influence on slope failure in the next thawing window.In this paper,soil strength was tested during freezing and thawing to obtain temperature-dependent strength parameters for the simulation of slope stability.Then,the slope's temperature field over an entire year was accurately simulated so that characteristics of the frozen layer could be determined at any time.Based on the above results,the progressive failure modes of frozen soil slopes are discussed.The results show that:1)during the freezing window,depth of the frozen soil layer increases,as does the slope's safety factor,while a yield zone propagates towards the slope shoulder.(2)During the thawing window,the frozen soil layer shrinks in depth while the yield zone continuously expands,which decreases the safety factor.Comprehensive analysis of these results indicate that the frozen layer provides a“toe-locking effect”that increases the safety factor during the freezing window,while it also provides a“dragging effect”that propagates the yield zone towards the slope shoulder.During the thawing window,the“toe-locking effect”gradually diminishes;a continuous sliding surface is formed,which lead to a landslide.The frozen soil layer of the freezing window accelerates the slope sliding in the thawing window.
文摘Objective: To investigate the factors that might influence the success of an embryo freezing and thawing program. Method: The relationship between the pregnancy rate in 73 cycles of embryo freezing and thawing program and the following factors was analyzed: maternal age, E 2 level at the time of HCG trigger, embryo storage time, number of thawed embryos transferred, presence of sponsoring embryos and intact embryos. And the survival rate of thawed embryos with different morphology, cell stage and storage time was evaluated. Result: Transfer with three or more than three thawed embryos resulted in pregnancy rates of 38.5% and 35.7%, respectively, compared with 5.3% for transfer of fewer than three embryos. The presence of sponsoring embryos and intact embryos significantly increases pregnancy rate in embryo freezing and thawing program. No other factor examined had any effect on pregnancy outcome. The survival rate of good morphology embryos was higher than poor ones, but was not influenced by cell stage and storage time. Conclusion: Embryo morphology before freezing, number of thawed embryos transferred and the presence of intact embryos are important to the outcome of embryo freezing and thawing program.
文摘The relations of change rate of an independent variable, volumetric strain of the porous skeleton, with the change rates of a kind of constitutive variables, such as porosity, volumetric strain of the solid matrix, are derived from the definition of the porosity of water saturated porous media; and the relations of the change rates of another two independent variables, pressure of the pore liquid water and temperature, with the change rates of another kind of constitutive variables, such as pressure of the pore ice, average pressure of the pore liquid water and ice, and average stress of the solid matrix, are obtained from the Clausius Clapeyron relation in the process of freezing or thawing, definitions of the average pore pressure and effective stress. Based on the hypothesis of linear thermoelasticity, principle of effective stress and these relations, the change rates of all constitutive variables may be described with the change rates of the three independent variables.
文摘Resistance to freezing and thawing of two UHSC (ultra high strength concrete) mixtures was evaluated in accordance with ASTM C 666 Procedure A. The two mixtures (plain and fiber reinforced) were developed using materials local to southern New Mexico, USA. Three different curing regimens were investigated for the mixture with fibers and one curing regimen was studied for the mixture without fibers. All curing regimens included 24 h of ambient curing followed by four days of wet curing at 50 ℃, and then two days dry curing at 200 ℃. At an age of seven days, one batch of fiber reinforced specimens was air cured at ambient conditions for the following six days and then placed in a water bath at 4.4 ℃ for 24 h prior to initiating freezing and thawing cycles. The second batch was air cured from day seven to day 12, and then wet cured for one day at 23 ℃ prior to being placed in the 4.4 ℃ water bath. The final batch was wet cured at 23 ℃ from the seventh day to an age of 13 days and then placed in the 4.4 ℃ water bath. The mixture with no fibers was air cured from the seventh day to an age of 12 days and then wet cured for one day at 23 ℃ prior to being placed in the 4.4 ℃ water bath. Higher moisture levels during curing produced greater initial dynamic elastic modulus values and durability factors at the end of the freezing and thawing tests, with the greatest durability factor being 87.5. Steel fibers were observed to improve both compressive strength and durability factor for UHSC.
基金Knowledge Innovation Program of Xinjiang Institute of Ecology and Geography, CAS, No.0571041
文摘Annual freezing and thawing index of 7 meteorological stations along the Qing- hai-Xizang Railway were calculated based on daily maximum and minimum temperature records for 1966-2004. Trends of annual freezing and thawing index were analyzed using the Mann-Kendall test and a simple linear regression method. The results show that: 1) The mean annual freezing indices range from 95 to 2300℃·d and the mean annual thawing indices range from 630 to 3250℃·d. The mean annual freezing index of the 7 stations exhibited decreasing trends with decreasing rate of -16.6- -59.1 ℃·d/10a. The mean annual thawing index of these 7 stations showed increasing trends with the related decreasing rate is 19.83-45.6℃·d/10a. 2) The MK trend test indicated the significant decreasing trends (significant at 〈 0.05 significant level) in the annual freezing index for most stations except for Golmud. The significant increasing trends can be observed in the annual thawing index for 4 stations except Golmud and Tuotuohe. Golmud was the only station with no trends in both annual freezing and annual thawing index.
文摘Polyvinyl alcohol(PVA) physiological saline gel was prepared using physiological saline solution of the polymer by freezing and thawing method. The influences of the concentration of PVA, freezing and thawing cycle times and solvent swelling media on the swelling properties of PVA saline gel were investigated. The result show that the electrolytical ions have great effect on the swelling behavior of PVA saline gel. The equilibrium swelling ratio of PVA saline gel in aqueous swelling media is larger than that in saline swelling media. Also, the equilibrium swelling ratios of PVA saline gel in aqueous and in saline media decrease with the increase of gel concentration and the increase of freezing and thawing cycle times. The decreasing speed of equilibrium swelling ratio with the increase of freezing and thawing cycle times of PVA gel in distilled water is faster than that in physiological saline. The swelling kinetic equation can sufficiently describe the swelling behavior of PVA physiological saline gel.
基金This research was supported by NSFC (National Natural Science Foundation of China) (Granted No.: 50909054, 50925933).
文摘Concrete dam construction, reservoir impoundment and operation are a complicated and long-term process. During the course of this process dam suffers lots of factors including changing temperature, humidity, deformation, loads and restraints around dam. With time going by, damage to darn concrete happens. As a result, the strength, stiffness and resistance of concrete will decrease accompanying with damage accumulation and dam structure performance behavior and lifetime will be shorten or even destructed. At present, most of researches focus on concrete material itself and seldom consider effects of water content for concrete structures. That is apparently inconsistent with the actual situation. In engineering practice, it is urgently needed to assess existing dam structure damage state considering dry zoning in concrete. Through taking C30 dam concrete as standard specimen, alternate freezing and thawing tests are undertaken and changing law of time-dependent concrete damage state resulting in alternate wetting and drying has been studied in this paper. And then calculation formulas of time-dependent concrete damage evolution process considering alternate wetting and drying under condition of freeze-thaw cycle tests are established. Combining with four parameters Hsieh-Ting-Chen ( H -T-C ) model, some relevant factors or parameters are obtained through indoor testing and life prediction model of concrete dam based on dry zoning and damage theory is put forward which provides technical supports for dam safety evaluation and management of sustainable development.
文摘This paper explores the conversion of raw seawater into drinking water from a religious water literacy (RWL) perspective. RWL is here defined as a socially just water literacy that is based on the respect for the dignity of life of all living beings on the Earth. It discusses the importance of sustainable water sources and proposes purification methods. That is, the study aims to show a brief outline of the drinking water source (inland waters;mainly river water) and their purification technologies in recent times and today and propose the purification method (Freezing-Thawing-UV method) in case of taking the seawater as the source. And, it emphasizes the need for dialogue and cooperation between countries in order to proceed. The paper also discusses the relationship among religion, culture, and civilization, and highlights the similarities between Marx’s historical materialism and Umesao’s ecological view. It further discusses the importance of water purification technology, separation methods, and the potential for seawater as an energy source. The paper concludes by discussing the importance of dialogue, communication and understanding environmental decision-making. In order to carry them forward, it is convinced that citizens in the world are nothing but people with self-awareness of “Bodhisattvas of the Earth” as identities. As a result, the new findings that suggest the possibility of raw seawater into drinking water from a religious water literacy perspective through the lens of Kawakatsu’s maritime view have been obtained.
基金Funded by the National High Technology R&D Program of China (863 Program, Nos. 2001AA621100, 2003AA603510 and 2004AA603310).
文摘Cryodamages occur during sperm cryopreservation. Cryopreservation of fish sperm usually results in marked decrease in sperm quality, such as swelling or disruption of the plasma membrane, mi-tochondrial dysfunction, diminished sperm motility, impaired velocity, shorter motility period, denatura-tion, and release of some enzymes from spermatozoa. In this paper, damages in morphology, physiology, biochemistry and metabolism, and genetic integrity of fish semen after cryopreservation are discussed. New approaches in assessment of fish thawed sperm quality such as computer assisted sperm analysis, flow cytometic analysis combined with fluorescent probes and single cell gel electrophoresis are also briefly reviewed.
基金supported by the National Natural Science Foundation of China(No.82001634)the China Postdoctoral Science Foundation(No.2019M661521).
文摘In the 1960s,sperm cryopreservation was developed as a method to preserve fertility.Currently,techniques for the cryopreservation of human spermatozoa have been widely used in assisted reproduction.However,although sperm cryobiology has made notable achievements,the optimal method for the recovery of viable spermatozoa after cryopreservation remains elusive.Postthawing sperm quality can be affected by cryoprotectants,ice formation,storage conditions,and osmotic stress during the freezing process.This review discusses recent advances in different cryopreservation techniques,cryoprotectants,and freezing and thawing methods during cryopreservation and new indications for the use of cryopreserved spermatozoa.