期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
Effect of PVA Fiber on the Dynamic and Static Mechanical Properties of Concrete under Freeze-thaw Cycles at Extremely Low Temperature(-70℃) 被引量:1
1
作者 LIU Jun JIANG Ting +1 位作者 YANG Yuanquan ZHOU Yifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期366-373,共8页
In order to study the effect of PVA fiber on the dynamic and static mechanical properties of low-temperature freeze-thaw concrete under the saturated surface dry state,different contents of PVA fiber were added to pre... In order to study the effect of PVA fiber on the dynamic and static mechanical properties of low-temperature freeze-thaw concrete under the saturated surface dry state,different contents of PVA fiber were added to prepare concrete in this experiment.The concrete was subjected to compression,flexural and SHPB impact tests combined with scanning electron microscopy for microstructure analysis,after different times of freeze-thaw cycles in the temperature range of 20-70℃.The experimental results show that the compressive strength of the PVA fiber reinforced concrete first increases and then decreases after freeze and thaw cycles,and the compressive strength is positively correlated with the fiber content.The flexural strength gradually decreases with freeze-thaw cycles.The flexural strength of the concrete with 1.2 kg/m^(3) of PVA fiber presents the lowest strength loss after 45 freeze and thaw cycles,which is about 14%.The dynamic failure strength gradually decreases with the increase of freeze-thaw times,and the reduction amplitude decreases with the increase of PVA fiber content.The best impact resistance is achieved when the PVA fiber dosage is 1.2 kg/m^(3). 展开更多
关键词 PVA fiber freeze-thaw cycle SHPB impact test MICROSTRUCTURE mechanical properties
下载PDF
Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles 被引量:2
2
作者 ZHANG Chi JIN Xiao-guang +1 位作者 HOU Chao HE Jie 《Journal of Mountain Science》 SCIE CSCD 2023年第1期227-241,共15页
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti... To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect. 展开更多
关键词 freeze-thaw cycles Anhydrite rock Physical and mechanical properties AE characteristics damage mechanism
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
3
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 ROCK freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles 被引量:2
4
作者 WANG Dan LIU En-long +3 位作者 YANG Cheng-song LIU You-qian ZHU Sheng-xian YU Qi-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期242-255,共14页
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem... As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions. 展开更多
关键词 freeze-thaw cycles Frozen clay Dynamic triaxial test Dynamic mechanical properties
下载PDF
Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil 被引量:9
5
作者 Dan Chang JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2013年第4期457-460,共4页
Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-th... Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles. 展开更多
关键词 freeze-thaw cycles physical properties mechanical properties significance and interaction
下载PDF
Axial Mechanical Properties of Timber Columns Subjected to Freeze-Thaw Cycles 被引量:2
6
作者 Kang He Yu Chen Jian Wang 《Journal of Renewable Materials》 SCIE EI 2020年第8期969-992,共24页
The behaviour of timber columns subjected to freeze-thaw cycles under axial compression is presented in this paper.A total of forty specimens,including twenty circular timber columns and twenty square timber columns,w... The behaviour of timber columns subjected to freeze-thaw cycles under axial compression is presented in this paper.A total of forty specimens,including twenty circular timber columns and twenty square timber columns,were tested under axial compression.The failure modes,ultimate bearing capacity,ductility coefficient,load-displacement curves and load-strain curves were obtained and analyzed.The number of freeze-thaw cycles(from 0 to 80)and the specimens’height(from 225 mm to 360 mm)were considered as the main parameters.After freeze-thaw cycles,there was no obvious change on the surface of the timber columns.The test results showed that freeze-thaw cycles could reduce the ultimate bearing capacity of the timber columns,and the average reduction of the ultimate bearing capacity of the specimen reached 28%.The ductility coefficient of the square specimens subjected to freeze-thaw cycles almost remains constant compared with that of the square timber columns left untreated.While the ductility coefficient of the circular timber columns increases after freeze-thaw cycles.In addition,based on the extensive experimental analysis,a regression formula is derived to predict the ultimate bearing capacity of the timber columns after being subjected to freeze-thaw cycles,which is proved to be reasonable accurate. 展开更多
关键词 Timber columns freeze-thaw cycles axial mechanical property ductility coefficient regression formula
下载PDF
Dynamic behaviors of water-saturated and frozen sandstone subjected to freeze-thaw cycles 被引量:3
7
作者 Feng Gao Cong Li +2 位作者 Xin Xiong Yanan Zhang Keping Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1476-1490,共15页
In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natura... In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity. 展开更多
关键词 freeze-thaw(F-T)cycle damage Dynamic properties Split Hopkinson pressure bar(SHPB) Increasing rate of porosity
下载PDF
The Effect of Different Freeze-Thaw Cycles on Mortar Gas Permeability and Pore Structure
8
作者 Wei Chen Ao Xu +3 位作者 Hejun Zhang Mingquan Sheng Yue Liang Frederic Skoczylas 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1623-1636,共14页
Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-free... Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process. 展开更多
关键词 MORTAR freeze-thaw cycles gas permeability pore structure NMR mechanical properties
下载PDF
Effect of freeze-thaw cycles on soil engineering properties of reservoir bank slopes at the northern foot of Tianshan Mountain 被引量:5
9
作者 QIN Zi-peng LAI Yuan-ming +1 位作者 TIAN Yan ZHANG Ming-yi 《Journal of Mountain Science》 SCIE CSCD 2021年第2期541-557,共17页
The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir s... The instability of soil bank slopes induced by freeze-thaw cycles at the northern foot of Tianshan Mountain is very common.The failure not only caused a large amount of soil erosion,but also led to serious reservoir sedimentation and water quality degradation,which exerted a lot of adverse effects on agricultural production in the local irrigation areas.Based on field investigations on dozens of irrigation reservoirs there,laboratory tests were carried out to quantitatively analyze the freeze-thaw effect on the soil engineering characteristics to reveal the facilitation on the bank slope instability.The results show that the softening characteristics of the stressstrain curves gradually weaken,the effective cohesions decline exponentially,the seepage coefficients enlarge,and the thermal conductivities decrease after 7 freeze-thaw cycles.The freeze-thaw effect on the specimens with low confining pressures,low dry densities and high water contents is more significant.The water migration and the phase transition between water and ice result in the variations of the soil internal microstructures,which is the main factor affecting the soil engineering characteristics.Sufficient water supply and the alternation of positive and negative temperatures at the reservoir bank slopes in cold regions make the water migration and phase transition in the soil very intensely.It is easy to form a large number of pores and micro cracks in the soil freezing and thawing areas.The volume changes of the soil and the water migration are difficult to reach a dynamic balance in the open system.Long-term freeze-thaw cycles will bring out the fragmentation of the soil particles,resulting in that the micro cracks on the soil surfaces are developing continuously.The soil of the bank slopes will fall or collapse when these cracks penetrate,which often happens in winter there. 展开更多
关键词 mechanical properties Seepage coefficient Thermal conductivity Micro structure freeze-thaw cycles Reservoir bank slope
下载PDF
Mechanical Characterization and Measurement of the Damage of <i>Pericopsis elata</i>(Assamela) 被引量:1
10
作者 Ulrich Gael Azeufack Bienvenu Kenmeugne +3 位作者 Emmanuel Foadieng Martial Fouotsa Pierre Kisito Talla M. Fogue 《World Journal of Engineering and Technology》 2019年第2期256-269,共14页
The prediction of the mechanical properties of wood and the evolution of its damage has been essential for its application in many fields such as bridges and houses construction, racks of trucks and so on. In more val... The prediction of the mechanical properties of wood and the evolution of its damage has been essential for its application in many fields such as bridges and houses construction, racks of trucks and so on. In more valorization of biomaterials following the example material wood arouses for a few years a?private interest on behalf of the populations. The experimental characterization?makes it possible to consider the mechanical properties local of Pericopsis elata (Assamela) according to various parameters (the wood turpentine, the orientation of wood fibers, water the content, the type of test …). From the?results, we evaluate the mechanical characteristics of Pericopsis elata (Assamela)?according to the three directions of Orthotropy. Then from the tests of load-discharge we measured the evolution of the damage using the variation of the Young modulus, which enabled us to note the reduction in the modulus of elasticity because of the damage following the three directions. Finally we noted a progressive and irreversible degradation of mechanical properties induced by the development of the microscopic cracks within material. 展开更多
关键词 Wood mechanical Properties MODULUS of Elasticity damage ORTHOTROPIC cycles Loading UNLOADING
下载PDF
BEHAVIOR OF AIR-ENTRAINED CONCRETE AFTER FREEZE-THAW CYCLES 被引量:11
11
作者 Huaishuai Shang Yupu Song Jinping Ou 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期261-266,共6页
The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive streng... The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions. 展开更多
关键词 air-entrained concrete freeze-thaw cycles mechanical properties the dynamic mod-ulus of elasticity weight loss
下载PDF
Acoustic experimental study of two types of rock from the Tibetan Plateau under the condition of freeze-thaw cycles 被引量:10
12
作者 Hua Liu FuJun Niu ZhiYing Xu ZhanJu Lin Jian Xu 《Research in Cold and Arid Regions》 2012年第1期21-27,共7页
Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan P... Under the condition of freeze-thaw cycles, two types of rocks (granite and andesite), used as slope protection for the Qinghai-Tibet Railway, were tested according to the special climatic conditions in the Tibetan Plateau, and their various damage processes in ap- pearance were carefully observed. Observation results show that damage of andesite was more serious than that of granite. Using an acoustic instrument, ultrasonic velocity was tested. The changing trends of velocity with the number of freeze-thaw cycles were analyzed, and the freeze-thaw cycle damaging the physical and mechanical properties of rocks can be seen. According to the changing trends of ultrasonic velocity with the number of freeze-thaw cycles, mechanical parameters of rocks, such as dynamic elasticity modulus, Poisson's ratio, and dynamic bulk modulus were analyzed. It is found that they all have declining trends as the number of fi'eeze-thaw cycles increases, and in particular, when the cycle number reaches a certain extent, the Poisson's ratio of rocks begins to become negative. 展开更多
关键词 freeze-thaw cycle GRANITE ANDESITE ultrasonic wave physical and mechanical properties
下载PDF
Experimental study of pre-cracked concrete subjected to cryogenic freeze-thaw cycles based on an LNG concrete tank 被引量:1
13
作者 Zhang Puyang Ma Yuxuan +2 位作者 Liu Yang Xu Yunlong Ding Hongyan 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期260-269,共10页
To investigate the mechanical properties of concrete under the leakage condition for a liquefied natural gas storage tank,cryogenic freeze-thaw cycle tests were performed under liquid nitrogen refrigeration and water ... To investigate the mechanical properties of concrete under the leakage condition for a liquefied natural gas storage tank,cryogenic freeze-thaw cycle tests were performed under liquid nitrogen refrigeration and water immersion melting.The effects of the cryogenic temperature,freeze-thaw cycle,pre-crack,and addition of steel fiber on the compressive strength,flexural strength,and splitting tensile concrete strength were analyzed.The experimental results show that the width of pre-cracks tends to expand after freeze-thaw cycles.When the freezing temperature is -80℃,the relative width of the pre-cracks expands by 1 to 2 times.However,when the freezing temperature is -120℃,the relative width of the pre-cracks expands by 2 to 5 times.Compared with the specimens without steel fibers,the specimens with steel fibers can still maintain a relatively complete appearance structure after the mechanical property tests.The compressive strength,flexural strength,and splitting tensile concrete strength decrease with the drop in the freezing temperature.After adding steel fibers,all of the three strengths increased. 展开更多
关键词 cryogenic temperature freeze-thaw cycle pre-cracked concrete steel fibers mechanical properties
下载PDF
Experimental study of the effects of non-uniformly distributed fine soil on mechanical properties of Shenyang–Dandong Railway coarse-grained soil
14
作者 QianMi Yu JianKun Liu +2 位作者 JingYu Liu DingJun Lv TengFei Wang 《Research in Cold and Arid Regions》 CSCD 2015年第5期503-512,共10页
The stress produced by repeated train loads decreases with increasing railway subgrade bed depth, and slightly weathered coarse particles of subgrade bed fillings can be broken at different levels under continuous loa... The stress produced by repeated train loads decreases with increasing railway subgrade bed depth, and slightly weathered coarse particles of subgrade bed fillings can be broken at different levels under continuous load. Thus, the mass of fine soil, with a diameter of not more than 0.075 mm, is different at different depths. Fine soil is also sensitive to frost heave and thaw settlement. In order to study the effects of non-uniformly distributed fine soil on the mechanical properties of coarse-grained soil of the Shenyang-Dandong Railway, triaxial tests were conducted with three types of specimens, un- dergoing six freeze-thaw cycle numbers (0, 1, 3, 7, 9, 12) and three confining pressures (100, 200, 300 kPa). The freezing temperature is -5 ~C and the thawing temperature is +15 ~C. The stress-strain behavior, static strength, resilient modulus, cohesive force and the angle of internal friction were measured for different tested specimens. As a result, the law of static strength and resilient modulus of different specimens following the increase of freeze-thaw cycles under three confining pressures is obtained. The changing law of cohesive force and friction angle of three specimens following the increase of freeze-thaw cycles is also calculated, and the different results of different specimens are also compared. 展开更多
关键词 fine soil non-uniform distribution freeze-thaw cycles soil mechanical properties
下载PDF
Research and Prediction on the Properties of Concrete at Cryogenic Temperature Based on Gray Theory
15
作者 ZHOU Dawei LIU Juanhong +3 位作者 CHENG Linian WU Ruidong ZOU Min WANG Jiahao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第5期1056-1064,共9页
To solve the cryogenic temperature problems faced by all-concrete liquefied natural gas(ACLNG)storage tanks during servicing,a low temperature resistant and high strength concrete(LHC)was designed from the perspective... To solve the cryogenic temperature problems faced by all-concrete liquefied natural gas(ACLNG)storage tanks during servicing,a low temperature resistant and high strength concrete(LHC)was designed from the perspectives of reducing water-binder ratio,removing coarse aggregates,optimizing composite mineral admixture and utilizing steel fibers.The variation laws of compressive and tensile strength,elastic modulus and Poisson’s ratio for C60 concrete and LHC were compared and analyzed under the temperatures from 10 to-165℃through uniaxial compression and tensile tests.The rapid freezing method was adopted to analyze the evolution process of mass and relative dynamic elastic modulus loss rates for C60 and LHC in 0-300 freeze-thaw cycles.The gas permeability test was carried out,and the laws of gas permeability coefficient varied with temperature and cryogenic freeze-thaw cycles were obtained.Then,the grey dynamic model GM(1,1)was used to predict the variation laws of physical and mechanical parameters on the basis of the test data.The test results demonstrate that the compressive strength,elastic modulus and Poisson’s ratio for both C60 and LHC increase significantly from 10 to-165℃,but the specific variation laws are difierent,and there is a phenomenon that some parameters decrease after reaching a critical temperature range for C60.The uniaxial tensile strength increases first and then decreases as temperature decreases,and finally increases slightly at-165℃for both C60 and LHC.The mass and relative dynamic elastic modulus loss rates of LHC are much lower than that of C60 under different freeze-thaw cycles.The gas permeability coefficient of C60 declines gradually with the drop of temperature,and increases gradually with the number of freeze-thaw cycles while the gas permeability coefficient of LHC basically remains stable and is much lower than that of C60.Therefore,such a conclusion can be drawn that LHC has better properties at cryogenic temperature.On the premise of providing consistent functional mode,GM(1,1)can predict the test data with high accuracy,which well reflects the variation laws of relevant parameters. 展开更多
关键词 CONCRETE cryogenic temperature freeze-thaw cycles mechanical properties gas permeability coefficient grey theory
下载PDF
干湿循环下复合激发膏体充填材料宏-细-微观强化与损伤特性 被引量:1
16
作者 王贻明 刘树龙 +2 位作者 吴爱祥 王志凯 张敏哲 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期665-676,共12页
为探明盐-碱复合激发膏体充填材料的性能变化规律及干湿循环作用下充填体结构多尺度损伤机制,对以脱硫石膏和水泥熟料为复合激发剂的膏体充填材料进行多目标优化,并对最优配比下的充填体试块进行0~25次干湿循环,开展抗压强度、X射线衍射... 为探明盐-碱复合激发膏体充填材料的性能变化规律及干湿循环作用下充填体结构多尺度损伤机制,对以脱硫石膏和水泥熟料为复合激发剂的膏体充填材料进行多目标优化,并对最优配比下的充填体试块进行0~25次干湿循环,开展抗压强度、X射线衍射(XRD)、低场核磁共振(NMR)、扫描电镜(SEM)试验,揭示充填体宏观力学行为和微细观结构演化规律。研究结果表明:充填材料最优配比是矿渣掺量为50%,脱硫石膏与水泥熟料质量比为3:7,硅灰掺量为2.5%。随着干湿循环次数的增加,充填体宏观表现为抗压强度的折减及累积电导率升高,干湿循环10次时出现拐点,质量损失率和强度损失率分别达极小值-1.91%和-8.36%;在细观尺度上,T2谱反演良好,干湿循环作用10次后,横向弛豫时间逐渐右移且谱面积增大,表明膏体充填材料孔隙尺寸及数量随着干湿循环次数增加而增大;微观尺度上,钙矾石、石膏和方解石等侵蚀产物的膨胀结晶应力加速了微观孔隙结构的发育,反复干湿循环作用削减了C-S-H凝胶的黏聚力,由最初的堆叠蜂窝状劣化为小块状。综合宏、细、微观结构演变规律可知,孔隙结构的损伤演化与力学性能的劣化特征具有较好的同步性。 展开更多
关键词 膏体充填材料 多目标优化 干湿循环 力学性能 水化产物 损伤机制
下载PDF
干湿-冻融循环下黄土力学特性及损伤机制研究
17
作者 郅彬 王尚杰 《岩土力学》 EI CAS CSCD 北大核心 2024年第4期1092-1102,共11页
为深入研究干湿-冻融循环对原状黄土力学特性的影响及细观损伤演化规律,通过不同次数干湿-冻融循环条件下的固结排水三轴剪切试验(consolidation drainage triaxial sheartest,CD)和核磁共振试验,从宏-细观角度分析其应力-应变曲线及强... 为深入研究干湿-冻融循环对原状黄土力学特性的影响及细观损伤演化规律,通过不同次数干湿-冻融循环条件下的固结排水三轴剪切试验(consolidation drainage triaxial sheartest,CD)和核磁共振试验,从宏-细观角度分析其应力-应变曲线及强度指标变化规律和细观孔隙的损伤变化规律。在此基础之上,假定黄土微元强度分布服从复合函数,建立了黄土的损伤统计本构模型,并验证其适用性。研究结果表明:土体的应力-应变曲线表现为应变软化,并且随着循环次数的增大软化程度逐渐减弱。偏应力峰值随循环次数减小并逐渐趋于稳定,在循环2次时其衰减程度最大,不同围压下分别衰减了17.6%、23.2%、24.5%和18.1%。土体内胶结块在循环作用下发生破损,使得内部孔隙面积逐渐增大,主要为小孔隙向中大孔隙的转变,随着循环次数的增大,内部结构逐渐趋于稳定。 展开更多
关键词 干湿-冻融循环 黄土 力学特性 细观损伤 损伤统计本构模型
下载PDF
基于超声检测的再生混凝土冻融循环损伤机制研究
18
作者 阿力普江·杰如拉 吴聪 +1 位作者 阿不都塞买提·卡力 杨彬 《混凝土与水泥制品》 2024年第9期114-119,共6页
基于超声检测方法,研究了不同冻融循环次数(0、15、30次)下不同再生粗骨料掺量(0、25%、50%、75%、100%)试件的声速、声时、波形、频率、振幅和力学性能变化,分析了再生混凝土的冻融循环损伤机理。结果表明:随着冻融循环次数和再生粗骨... 基于超声检测方法,研究了不同冻融循环次数(0、15、30次)下不同再生粗骨料掺量(0、25%、50%、75%、100%)试件的声速、声时、波形、频率、振幅和力学性能变化,分析了再生混凝土的冻融循环损伤机理。结果表明:随着冻融循环次数和再生粗骨料掺量的增加,试件的抗压强度降低,声时增大,声速基本呈降低趋势,波形图的振幅衰减且波形趋于平缓,频域图的波峰基本呈降低趋势;超声检测参数有效揭示了再生混凝土在冻融循环下的损伤机制,可为再生混凝土的强度和内部缺陷情况评价提供参考。 展开更多
关键词 超声检测 再生混凝土 冻融循环 力学性能 损伤机理
下载PDF
考虑干湿循环路径的粉砂质泥岩力学特性及本构模型
19
作者 成辉 付宏渊 +3 位作者 曾铃 于晓伟 罗锦涛 刘杰 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第9期1912-1922,1980,共12页
为了分析南方湿热地区粉砂质泥岩边坡浅层失稳机制,开展不同干湿循环路径下的粉砂质泥岩低围压三轴压缩试验与扫描电镜(SEM)试验.基于连续损伤理论和修正Drucker-Prager(D-P)强度准则,构建可考虑干湿循环路径影响的粉砂质泥岩损伤本构模... 为了分析南方湿热地区粉砂质泥岩边坡浅层失稳机制,开展不同干湿循环路径下的粉砂质泥岩低围压三轴压缩试验与扫描电镜(SEM)试验.基于连续损伤理论和修正Drucker-Prager(D-P)强度准则,构建可考虑干湿循环路径影响的粉砂质泥岩损伤本构模型.结果表明:粉砂质泥岩应力-应变曲线具有非线性特征,可分为压密阶段、弹性阶段、塑性屈服阶段、峰后破坏阶段和残余强度阶段;随干湿循环次数或循环幅度的增加,压密阶段与塑性屈服阶段延长,岩样峰值强度、变形模量、黏聚力和内摩擦角损伤逐渐增大,粉砂质泥岩力学参数敏感度表现为变形模量>黏聚力>内摩擦角>峰值强度;受溶蚀、潜蚀作用,粉砂质泥岩孔隙率不断增大,破坏模式由以剪切破坏形式为主的顶锥-劈裂破坏向剪切破坏演化.构建的岩石损伤本构模型能考虑干湿循环路径的影响,能较好地反映粉砂质泥岩应力-应变曲线全过程变形特征. 展开更多
关键词 粉砂质泥岩 干湿循环路径 力学特性 微观结构 损伤本构模型
下载PDF
冻融循环作用下花岗岩力学特性和破坏过程研究
20
作者 何军杰 刘曼曼 +1 位作者 苏立彬 刘勇 《水科学与工程技术》 2024年第2期76-79,共4页
冻融循环是造成寒区岩石力学性能劣化的主要因素之一。为了研究冻融循环中岩石的劣化损伤演化过程,选用花岗岩依次进行冻融循环试验和单轴压缩试验,分析花岗岩试样的变形情况和破坏特性。结果表明:冻融循环后花岗岩的力学参数呈指数型衰... 冻融循环是造成寒区岩石力学性能劣化的主要因素之一。为了研究冻融循环中岩石的劣化损伤演化过程,选用花岗岩依次进行冻融循环试验和单轴压缩试验,分析花岗岩试样的变形情况和破坏特性。结果表明:冻融循环后花岗岩的力学参数呈指数型衰减,破坏模式改变且主裂缝数量增多。依据试验数据提出花岗岩的力学参数衰减模型,进一步分析损伤变量的演化规律。研究内容可为评估寒区岩体工程抵抗冻融循环的能力、计算工程的稳定性提供试验依据。 展开更多
关键词 冻融循环 花岗岩 衰减模型 损伤变量 力学性能
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部