期刊文献+
共找到916篇文章
< 1 2 46 >
每页显示 20 50 100
Compressive strength and frost heave resistance of different types of semi-rigid base materials after freeze-thaw cycles 被引量:3
1
作者 ZhenYa Liu JingYu Liu +1 位作者 QingZhi Wang JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2015年第4期365-369,共5页
Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different ... Freeze-thaw damage is the most common disease of semi-rigid bases in cold regions, which may greatly affect the dura- bility of roadways. In this study, the compressive strength and frost resistance of four different types of semi-rigid bases (lime-fly ash-stabilized sand, cement-stabilized sand, lime-fly ash-stabilized gravel, and cement-stabilized gravel) are assessed by varying the materials content. Based on freeze-thaw and compressive strength tests, this paper presents the performance of the different materials, each having different physical properties, and the optimal amounts of materials contents are proposed. 展开更多
关键词 freeze-thaw cycles semi-rigid base stabilized base
下载PDF
Effect of High Temperature Curing on the Frost Resistance of Recycled Aggregate Concrete and the Physical Properties of Second-Generation Recycled Coarse Aggregate under Freeze-Thaw Cycles 被引量:1
2
作者 Xintong Chen Pinghua Zhu +2 位作者 Xiancui Yan Lei Yang Huayu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2953-2967,共15页
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen... With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties. 展开更多
关键词 freeze-thaw cycles curing condition recycled aggregate concrete second-generation recycled coarse aggregate
下载PDF
Carbon Nanotubes and Resistance to Freeze-Thaw Cycles
3
作者 Sena Peace Hounkpe Valéry K. Doko +2 位作者 Smith O. Kotchoni Hui Li Abbas T. Datchossa 《Materials Sciences and Applications》 2021年第5期239-254,共16页
The research of materials with good properties is one of the important concerns of scientists groups, and more again in region where materials are subjected to freeze and thaw cycles. In the case of this paper, it has... The research of materials with good properties is one of the important concerns of scientists groups, and more again in region where materials are subjected to freeze and thaw cycles. In the case of this paper, it has been a matter of evaluating of the effect of carbon nanotubes on concrete resistance to freeze and thaw cycles. Thus, it has been manufactured concretes with different rates of addition (0%, 0.1%, 0.5%, 1% bwc) of cement by carbon nanotubes. The durability factor, determined for C30 specimens at 28 days, shows that C005 provides a better resistance to freezing-thawing cycles with a 54.96 as index. 展开更多
关键词 SILICATES Flexural Strength Compressive Strength CEMENT Carbon Nanotubes freeze-thaw cycles
下载PDF
Experimental and numerical analysis on interface damage ofslab track under freeze-thaw cycles
4
作者 REN Juan-juan DU Wei +2 位作者 YE Wen-long XU Xue-shan DENG Shi-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3782-3806,共25页
The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obt... The interface of slab track laid in cold regions is prone to debonding under the coupling of freeze-thaw cyclesand temperature loads.Based on the composite specimen tests,the parameters of cohesive zone model were obtained andused in a simulation model of CRTS III prefabricated slab track to study the interlayer damage.The results show that 1)the digital image correlation(DIC)technique can accurately capture the strain field changes on the interface of compositespecimens under splitting and shear loading;2)when the temperature gradient is−40℃/m−60℃/m,the interfacedamage of the slab track is minimal and presents different patterns of expansion under positive and negative temperaturegradients,each corresponding to damage of the cohesive element dominated by shear stress and normal tensile stress,respectively;3)the reduction of the elastic modulus at the concrete base after freeze-thaw inhibits interface damage andleads to a higher starting temperature gradient load,but cracking can occur on the concrete base after 150 freeze-thaws.For this reason,in the light of damage control of both the interface and concrete base,the elastic modulus of the concretebase is 54%or over that without freeze-thaw cycles. 展开更多
关键词 CRTS III prefabricated slab track freeze-thaw cycle bonding performance cohesive zone model interface damage
下载PDF
Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment
5
作者 Jie Huang Rongbin Jiang +1 位作者 Xiaobo Sun Yingyong Shuai 《Journal of Renewable Materials》 EI CAS 2024年第1期187-201,共15页
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ... The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential. 展开更多
关键词 Carbonation treatment REPAIR freeze-thaw cycles second-generation recycled fine aggregate
下载PDF
Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete
6
作者 Yang Li Sibo Jiang Ruixin Lan 《Structural Durability & Health Monitoring》 EI 2024年第3期255-276,共22页
Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of differe... Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications. 展开更多
关键词 Chloride ions freeze-thaw cycles cracks
下载PDF
NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles 被引量:20
7
作者 李杰林 周科平 +1 位作者 刘伟杰 邓红卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2997-3003,共7页
In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonan... In order to study the deterioration characteristics of the microscopic structure of sandstones in freeze-thaw cycles, tests of180 freeze-thaw cycles were performed on sandstone specimens. The nuclear magnetic resonance (NMR) technique was applied tothe measurement of sandstone specimens and analysis of the magnetic resonance imaging. Then, the fractal theory was employed tocompute the fractal dimension values of pore development of rocks after different freeze-thaw cycles. The results show that the massand porosity of rocks grow with the increase of freeze-thaw cycles. According to the NMR T2 distribution of sandstones, the poresizes of rock specimens increase after 180 freeze-thaw cycles, especially that of the medium-sized and small-sized pores. The spatialdistribution of sandstone pores after freeze-thaw cycles has fractal features within certain range, and the fractal dimension ofsandstones tends to increase gradually. 展开更多
关键词 nuclear magnetic resonance (NMR) freeze-thaw cycles deterioration of rocks microscopic structure fractal dimension
下载PDF
Resistance Torque Based Variable Duty-Cycle Control Method for a Stage Ⅱ Compressor
8
作者 Meipeng ZHONG Shuiying ZHENG 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期876-887,共12页
The resistance torque of a piston stage II com- pressor generates strenuous fluctuations in a rotational period, and this can lead to negative influences on the working performance of the compressor. To restrain the s... The resistance torque of a piston stage II com- pressor generates strenuous fluctuations in a rotational period, and this can lead to negative influences on the working performance of the compressor. To restrain the strenuous fluctuations in the piston stage II compressor, a variable duty-cycle control method based on the resistance torque is proposed. A dynamic model of a stage II com- pressor is set up, and the resistance torque and other characteristic parameters are acquired as the control tar- gets. Then, a variable duty-cycle control method is applied to track the resistance torque, thereby improving the working performance of the compressor. Simulated results show that the compressor, driven by the proposed method, requires lower current, while the rotating speed and the output torque remain comparable to the traditional vari- able-frequency control methods. A variable duty-cycle control system is developed, and the experimental results prove that the proposed method can help reduce the specific power, input power, and working noise of the compressor to 0.97 kW.m-3.min-1, 0.09 kW and 3.10 dB, respectively, under the same conditions of discharge pressure of 2.00 MPa and a discharge volume of 0.095 m3/rain. The proposed variable duty-cycle control method tracks the resistance torque dynamically, and improves the working performance of a Stage II Compressor. The pro- posed variable duty-cycle control method can be applied to other compressors, and can provide theoretical guidance for the compressor. 展开更多
关键词 Stage II compressor resistance torque Variable duty-cycle control Variable frequency control
下载PDF
Effects of freeze-thaw cycles on fracture behavior of epoxy asphalt concrete 被引量:4
9
作者 张勐 钱振东 《Journal of Southeast University(English Edition)》 EI CAS 2017年第1期96-100,共5页
According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulu... According to the winter temperature of Peking,the freeze-thaw(FT) condition in laboratory was determined.Seven groups of epoxy asphalt concrete(EAC) specimen were exposed to different FT cycles.The flexural modulus and fracture energy(G_F) of EAC exposed to different FT cycles were obtained through the 3-point bending test.Meanwhile,the plane strain fracture toughness(K_(IC)) of EAC was obtained through numerical simulation.The results show that the flexural modulus of the FT conditioned EAC samples decreases with the increase of FT cycles.The FT damage of flexural modulus is 60%after 30 FT cycles.Nevertheless,with the increase of FT cycles,the G_F and K_(IC) of EAC decrease first and then increase after 15 FT cycles. 展开更多
关键词 freeze-thaw cycle epoxy asphalt concrete flexural modulus fracture energy plane strain fracture toughness
下载PDF
Ultimate load bearing capacity evaluation of concrete beams subjected to freeze-thaw cycles 被引量:1
10
作者 秦晓川 孟少平 +1 位作者 涂永明 曹大富 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期522-528,共7页
A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw d... A theoretical prediction method based on the change of concrete material is proposed to evaluate the ultimate bending moment of concrete beams which have undergone freeze-thaw cycles (PTCs). First, the freeze-thaw damage on concrete material is analyzed and the residual compressive strength is chosen to indicate the freeze-thaw damage. Then, the equivalent block method is employed to simplify the compressive stress-strain curve of the freeze-thaw damaged concrete and the mathematical expression for the ultimate bending moment is obtained. Comparisons of the predicted results with the test data indicate that the ultimate bending moment of concrete beams affected by FTC attack can be predicted by this proposed method. However, the bond-slip behavior and the randomness of freeze-thaw damage will affect the accuracy of the predicted results, especially when the residual compressive strength is less than 50%. 展开更多
关键词 concrete beam freeze-thaw cycles ultimate bending moment structural analysis
下载PDF
Determination of Optimum Conditions for Cell-wall Destruction of Auricularia auricula Mycelia under the Synergistic Effect of Ultrasonic Waves and Repeated Freeze-thaw Cycles 被引量:1
11
作者 黄贤刚 鲁曾 胡晓文 《Agricultural Science & Technology》 CAS 2014年第8期1258-1261,共4页
We aimed to investigate the synergistic effects of ultrasonic waves and repeated freeze-thaw cycles on cel-wal destruction of Auricularia auric-ula mycelia, and determine the best combination of conditions for cel-wal... We aimed to investigate the synergistic effects of ultrasonic waves and repeated freeze-thaw cycles on cel-wal destruction of Auricularia auric-ula mycelia, and determine the best combination of conditions for cel-wal destruc-tion of Auricularia auricula mycelia. [Method] The effects of destruction time, added water, destruction times, freeze time and number of freeze-thaw cycles during ultra-sonic treatment on polysaccharide yield were investigated by single-factor test in our research. The optimum conditions for cel-wal destruction of Auricularia auricula mycelia by the synergistic effect of ultrasonic waves and repeated freeze-thaw cycles were ascertained by orthogonal test. [Result] The results of single test indicated the best combination of conditions was as fol ows: freeze time, 30 min; destruction time, 20 min; added water, 15 times; destruction times, 2 times; number of freeze-thaw cycles, 3 cycles. The results of orthogonal test indicated the influencing factors ranked as destruction time 〉 destruction times 〉 freeze time. The best combination of conditions was as fol ows: freeze time, 30 min; destruction time, 25 min; destruc-tion times, 2 times. Under above conditions, the polysaccharide yield reached 57.76 mg/g. [Conclusion] This research would provide a basis and reference for practical production. 展开更多
关键词 Ultrasonic waves-repeated freeze-thaw cycles Auricularia auricula mycelia Cel-wal destruction
下载PDF
Effect of Freeze-Thaw Cycles on Mechanical Properties and Permeability of Red Sandstone under Triaxial Compression 被引量:16
12
作者 YU Jin CHEN Xu +2 位作者 LI Hong ZHOU Jia-wen CAI Yan-yan 《Journal of Mountain Science》 SCIE CSCD 2015年第1期218-231,共14页
Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of... Geological disasters will happen in cold regions because of the effects of freeze-thaw cycles on rocks or soils, so studying the effects of these cycles on the mechanical characteristics and permeability properties of rocks is very important. In this study, red sandstone samples were frozen and thawed with o, 4, 8 and 12 cycles, each cycle including 12 h of freezing and 12 h of thawing. The P-wave velocities of these samples were measured, and the mechanical properties and evolution of the steady-state permeabilities were investigated in a series of uniaxial and triaxial compression tests. Experimental results show that, with the increasing of cyclic freeze-thaw times, the P-wave velocity of the red sandstone decreases. The number of freeze-thaw cycles has a significant influence on the uniaxial compressive strength, elastic modulus, cohesion, and angle of internal friction. The evolution of permeability of the rock samples after cycles of freeze-thaw in a complete stress-strain process under triaxial compression is closely related to the variation of the microstructure in the rock. There is a highly corresponding relationship between volumetric strain and permeability with axial strain in all stages of the stress-strain behaviour. 展开更多
关键词 freeze-thaw cycles Red sandstone Triaxial compression PERMEABILITY Mechanicalproperties
下载PDF
Effects of freeze-thaw cycle on engineering properties of loess used as road fills in seasonally frozen ground regions,North China 被引量:17
13
作者 LI Guo-yu MA Wei +3 位作者 MU Yan-hu WANG Fei FAN Shan-zhi WU Ya-hu 《Journal of Mountain Science》 SCIE CSCD 2017年第2期356-368,共13页
Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. H... Compacted loess is widely used as fills of road embankments in loess regions of northern China.Generally, densely-compacted loess can satisfy the requirements of embankment strength and postconstruction deformation. However, uneven subsidence, pavement cracks and other related damages can affect the integrity of loess subgrade after several years of operation,and even cause some hazards, especially in North China, where the strong freeze-thaw erosion occurs. In this study, cyclic freeze-thaw tests for both densely and loosely compacted loess samples were performed to determine the variation in engineering properties such as volume, void ratio, collapsible settlement,microstructure, and the related mechanisms were addressed. The experimental results showed that an obvious water migration and redistribution occurred within the samples during freeze-thaw cycles. Ice lenses and fissures could be identified in the upper frozen layers of the samples. After freeze-thaw cycles,the dry densities of the upper layers of samples changed significantly due to strong freeze-thaw erosion. The dry densities decreased for the dense sample and increased for the loose sample. It can be found that dense samples become loose, while loose samples became dense with the increasing number of freeze-thaw cycles. Their related void ratios changed reversely. Both void ratios tended to fall into a certain range, which verified the concept of a residual void ratio proposed by Viklander. The loosening process of densely compacted samples involves the formation of large pores, volume increase and density reduction as well as the related changes in mechanical properties because freeze-thaw cycles may be important contribution to problems of loess road embankments.Adverse effects of freeze-thaw cycles, therefore,should be taken into account in selecting loess parameters for the stability evaluation of road embankment in seasonally frozen ground regions. 展开更多
关键词 LOESS freeze-thaw cycle Frost heave Thaw settlement Road engineering
下载PDF
Damage mechanism of soil-rock mixture after freeze-thaw cycles 被引量:20
14
作者 ZHOU Zhong XING Kai +1 位作者 YANG Hao WANG Hao 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第1期13-24,共12页
As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the ... As a widely distributed geological and engineering material,the soil-rock mixture always undergoes frequentative and short-term freeze-thaw cycles in some regions.Its internal structure is destroyed seriously,but the damage mechanism is not clear.Based on the damage factor,the damage research of properties of soil-rock mixture after different times of freeze-thaw cycles is investigated.Firstly,the size-distributed subgrade gravelly soil samples are prepared and undergo different times of freeze-thaw cycles periodically(0,3,6,10),and indoor large-scale triaxial tests are completed.Secondly,the degradation degree of elastic modulus is considered as a damage factor,and applied to macro damage analysis of soil-rock mixture.Finally,the mesoscopic simulation of the experiments is achieved by PFC3D,and the influence on strength between soil-rock particles caused by freeze-thaw cycles is analyzed.The results show that freeze-thaw cycles cause internal damage of samples by weakening the strength between mesoscopic soil-rock particles,and ultimately affect the macro properties.After freeze-thaw cycles,on the macro-scale,elastic modulus and shear strength of soil-rock mixture both decrease,and the decreasing degree is related to the times of cycles with the mathmatical quadratic form;on the meso-scale,freeze-thaw cycles mainly cause the degradation of the strength between soil-rock particles whose properties are different significantly. 展开更多
关键词 soil-rock mixture freeze-thaw cycle large-scale triaxial test strength between soil-rock particles
下载PDF
Experimental studies on the pore structure and mechanical properties of anhydrite rock under freeze-thaw cycles 被引量:11
15
作者 Chao Hou Xiaoguang Jin +1 位作者 Jie He Hanlin Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期781-797,共17页
To study the deterioration mechanisms of anhydrite rock under the freeze-thaw weathering process,the physico-mechanical characteristics and microstructure evolutions of anhydrite samples were determined by a series of... To study the deterioration mechanisms of anhydrite rock under the freeze-thaw weathering process,the physico-mechanical characteristics and microstructure evolutions of anhydrite samples were determined by a series of laboratory tests.Then,a descriptive-behavioral model was used to measure the integrity loss in anhydrite samples caused by cyclic freeze-thaw.Finally,the freeze-thaw damage mechanisms of anhydrite rock were revealed from the macro and micro aspects.The results show that the pore size of the anhydrite rock is mainly concentrated in the range of 0.001-10μm.As the number of freeze-thaw cycles increases,there is a growth in the proportion of macropores and mesopores.However,the proportion of micropores shows a declining trend.The relations of the uniaxial compressive strength,triaxial compressive strength,cohesion,and elastic modulus versus freeze-thaw cycles can be fitted by a decreasing exponential function,while the internal friction angle is basically unchanged with freezethaw cycles.With the increase of confining pressure,the disintegration rates of the compressive strength and the elastic modulus decrease,and the corresponding half-life values increase,which reveals that the increase of confining pressures could inhibit freeze-thaw damage to rocks.Moreover,it has been proven that the water chemical softening mechanism plays an essential role in the freeze-thaw damage to anhydrite rock.Furtherly,it is concluded that the freeze-thaw weathering process significantly influences the macroscopic and microscopic damages of anhydrite rock. 展开更多
关键词 Anhydrite rock freeze-thaw cycles Physico-mechanical characteristics Microstructure evolution Deterioration mechanisms
下载PDF
Deterioration Mechanism of Sulfate Attack on Concrete under Freeze-thaw Cycles 被引量:8
16
作者 NIU Ditao JIANG Lei FEI Qiannan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1172-1176,共5页
The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses ... The experiments of concrete attacked by sulfate solution under freeze-thaw cycles were investigated. The sulfate solution includes two types of 5% Na2SO4 and 5% MgSO4. Through the experiment, microstructural analyses such as SEM, XRD and TGA measurements were performed on the selected samples after freeze-thaw cycles. The corrosion products of the concrete were distinguished and quantitatively compared by the thermal analysis. Besides, the damage mechanism considering the dynamic modulus of elastically of concrete under the coupling effect was also investigated. The experimental results show that, under the action of freeze-thaw cycles and sulfate attack, the main attack products in concrete are ettringite and gypsum. The corrosion products exposed to MgSO4 solution are more than those to Na2SO4 solution. Furthermore, the content of gypsum in concrete is less than that of ettringite in test, and some of gypsum can be observed only after a certain corrosion extent. It is also shown that MgSO4 solution has a promoting effect to the damage of concrete under freeze-thaw cycles. Whereas for Na:SO4 solution, the damage of concrete has restrained before 300 freeze-thaw cycles, but the sulfate attack accelerates the deterioration process in its further test period. 展开更多
关键词 CONCRETE freeze-thaw cycles sulfate attack corrosion products thermal analysis
下载PDF
Effect of Freeze-thaw Cycles on Bond Strength between Steel Bars and Concrete 被引量:6
17
作者 JI Xiaodong SONG Yupu LIU Yuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期584-588,共5页
The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed... The effect of freezing and thawing cycles on mechanical properties of concrete (compressive, splitting tensile strength) was experimentally investigated. According to the pullout test data of three kinds of deformed steel bars, the bond stress-slip curves after freezing and thawing were obtained. The empirical equations of peak bond strength were proposed that the damage accounted for effects of freezing and thawing cycle. Meanwhile, the mechanism of bond deterioration between steel bars and concrete after freezing and thawing cycles was discussed. All these conclusions will be useful to the durability design and reliability calculation of RC structures in cold region. 展开更多
关键词 CONCRETE steel bars bond strength freeze-thaw cycles
下载PDF
Shear behavior of ultrafine magnetite tailings subjected to freeze-thaw cycles 被引量:6
18
作者 Chong Wei Derek B.Apel Yunhai Zhang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期609-616,共8页
To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of f... To study the shear behavior of the ultrafine magnetite tailings subjected to freeze-thaw cycles,unconsolidated-undrained shear tests were conducted on ultrafine-grained tailings that were subjected to 1-11 cycles of freeze-thaw and defined as a type of clayey silt under confining pressures of 100,200,and 300 kPa.Taking the number of freeze-thaw cycles,cooling temperature,initial dry density,and moisture content as the four main influencing factors of shear behavior of the tailings samples,the shear stress-strain curve,compression modulus,failure strength,cohesion,and internal friction angle were measured.The results show that the freeze-thaw cycle has an obvious weakening effect on the shear behavior of the tailings material,and the shear mechanical parameters are affected by a combination of confining pressure,freeze-thaw cycle condition,and initial physical-mechanical properties of the tailings samples.Through the microstructural analysis of the tailings samples subjected to freeze-thaw cycles,it shows that the freeze-thaw cycle mainly affects the porosity,bound water,and arrangement of the tailings particles.Subsequently,the macroscopic changes in shear strength indexes emerge,and then the stability of the tailings dam will decrease. 展开更多
关键词 ULTRAFINE MAGNETITE tailings(UMT) freeze-thaw cycle SHEAR behavior TRIAXIAL SHEAR test
下载PDF
BEHAVIOR OF AIR-ENTRAINED CONCRETE AFTER FREEZE-THAW CYCLES 被引量:11
19
作者 Huaishuai Shang Yupu Song Jinping Ou 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第3期261-266,共6页
The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive streng... The experimental study of air-entrained concrete specimens subjected to different cycles of freeze-thaw was completed. The dynamic modulus of elasticity, weight loss, the cubic compressive strength, compressive strength, tensile strength and cleavage strength of air-entrained concrete were measured after 0, 100, 200, 300, 400 cycles of freeze-thaw. The experimental results showed that the dynamic modulus of elasticity and strength decreased as the freeze-thaw was repeated. The influences of freeze-thaw cycles on the mechanical properties, the dynamic modulus of elasticity and weight loss were analyzed according to the experimental results. It can serve as a reference for the maintenance, design and the life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in northern cold regions. 展开更多
关键词 air-entrained concrete freeze-thaw cycles mechanical properties the dynamic mod-ulus of elasticity weight loss
下载PDF
The influence of freeze-thaw cycles on the granulometric composition of Moscow morainic clay 被引量:8
20
作者 Ze Zhang Vadim V.Pendin +1 位作者 WenJie Feng ZhongQiong Zhang 《Research in Cold and Arid Regions》 CSCD 2015年第3期199-205,共7页
The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research pri... The freeze-thaw cycling process considerably changes the composition, structure, and properties of soils. Since the grain size is the most important factor in determining soil characteristics, our current research primarily aims to investigate dynamic changes of the soil fraction when exposed to freeze-thaw conditions. We observed two series of Moscow morainic clayey specimens (gQⅡm): (Ⅰ) the original series, and (Ⅱ) the remolded series. We subjected each series of soil specimens to different frequencies of freeze-thaw cycles (3, 6, 20, and 40 cycles), and we used granulometric tests to analyze both series before and after exposure to freeze-thaw conditions. As a result of our experiments, the granulometric compositions tended to be distributed evenly after 40 freeze-thaw processes (i.e., content of fraction for 0.1-0.05 mm was increased after 40 freeze-thaw cycles) because the division of coarse grains and the aggregation of fine grains were synchronized during the freeze-thaw process. The soil grains in both series changed bi-directionally. In the original series, changes of the sand grains were conjugated with the clay grains, and in the remolded series, changes of the sand grains were conjugated with the silt grains, because potential energy difference caused the division and aggregation processes to relate to the counteraction process. The even distribution of soil grain size indicated the state of equilibrium or balance. The granulometric compositions were altered the most during the sixth freeze-thaw cycle, because the coefficient of the intensity variation of the grain fineness (Kvar) had its maximum value at that time. 展开更多
关键词 Moscow morainic clay freeze-thaw cycles granulometric composition VARIABILITY
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部