期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
Water Absorption and Chloride Ion Penetrability of Concrete Damaged by Freeze-thawing and Loading 被引量:1
1
作者 杨林 SUN Wei +2 位作者 LIU Cheng 张云升 LIANG Fei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期330-337,共8页
In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ult... In order to investigate water and chloride ion transport in damaged concrete, three types of concrete were prepared, freeze-thawing(F-T) cycling and compressive loading were adopted to induce damage to concrete. Ultrasonic pulse velocity technique was used for evaluating the damage degree of concrete, and the defects of damaged concrete were also detected by X-CT. Water absorption and chloride ion penetrability were used for describing the transport properties of damaged concrete. Effects of damage degree on the water absorption rate and chloride ion penetrability were investigated in detail and the relationships were also established. The results show that the water absorption of concrete makes various responses to damage degree due to the difference of concrete type and damage method. For same concrete with similar damage degree, the water absorption rate of F-T damaged concrete is usually larger than that of concrete damaged by loading. The chloride ion penetrability of damaged concrete increases linearly with increasing damage degree, which is more sensitive to damage degree if the original penetrability of sound concrete is higher. 展开更多
关键词 concrete water absorption chloride ion freeze-thawing loading durability
下载PDF
Fractal Study on the Evolution of Micro-Pores in Concrete Under Freeze-Thaw
2
作者 孙浩然 邹春霞 +2 位作者 XU Deru GUO Xiaosong HUANG Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期109-117,共9页
After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and t... After exposure to freeze-thaw cycles, scanning electron microscopy(SEM) and nuclear magnetic resonance(NMR) were used to test the four mixtures. The microstructure is qualitatively analyzed from the 2D SEM image and the 3D pore distribution curve before and after freezing and thawing. The fractal dimension is utilized to characterize the two-dimensional topography image and the three-dimensional pore distribution, quantitatively. The results reveal that the surface porosity and volume porosity increase as the freeze-thaw action increases. Self-similarity characteristics exist in micro-damage inside the concrete. In the fractal dimension, it is possible to characterize pore evolution quantitatively. The fractal dimension correlates with pore damage evolution. The fractal dimension effectively quantitatively characterizes micro-damage features at various scales from the local to the global level. 展开更多
关键词 fractal dimension freeze-thaw cycle CONCRETE SEM NMR
下载PDF
Freeze-thaw cycles and associated geomorphology in a post-glacial environment:current glacial,paraglacial,periglacial and proglacial scenarios at Pico de Orizaba volcano,Mexico
3
作者 Víctor SOTO Carlos M.WELSH R. +1 位作者 Kenji YOSHIKAWA Hugo DELGADO GRANADOS 《Journal of Mountain Science》 SCIE CSCD 2024年第6期1954-1977,共24页
The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retracti... The glacial history of Pico de Orizaba indicates that during the Last Glacial Maximum,its icecap covered up to~3000 m asl;due to the air temperature increasing,its main glacier has retreated to 5050 m asl.The retraction of the glacier has left behind an intense climatic instability that causes a high frequency of freeze-thaw cycles of great intensity;the resulting geomorphological processes are represented by the fragmentation of the bedrock that occupies the upper parts of the mountain.There is a notable lack of studies regarding the fragmentation and erosion occurring in tropical high mountains,and the associated geomorphological risks;for this reason,as a first stage of future continuous research,this study analyzes the freezing and thawing cycles that occur above 4000 m asl,through continuous monitoring of surface ground temperature.The results allow us to identify and characterize four zones:glacial,paraglacial,periglacial and proglacial.It was found that the paraglacial zone presents an intense drop of temperature,of up to~9℃ in only sixty minutes.The rock fatigue and intense freeze-thaw cycles that occur in this area are responsible for the high rate of rock disintegration and represent the main factor of the constant slope dynamics that occur at the site.This activity decreases,both in frequency and intensity,according to the distance to the glacier,which is where the temperature presents a certain degree of stability,until reaching the proglacial zone,where cycles are almost non-existent,and therefore there is no gelifraction activity.The geomorphological processes have resulted in significant alterations to the mountain slopes,which can have severe consequences in terms of risk and water. 展开更多
关键词 freeze-thaw Gelifraction Mountain mechanical erosion Periglacial geomorphology Postglacial scenarios
下载PDF
Effect of sodium starch octenyl succinate-based Pickering emulsion on the physicochemical properties of hairtail myofibrillar protein gel subjected to multiple freeze-thaw cycles
4
作者 Huinan Wang Jiaxin Zhang +3 位作者 Xinran Liu Jinxiang Wang Xuepeng Li Jianrong Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1018-1028,共11页
A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles... A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs. 展开更多
关键词 Pickering emulsion Myofibrillar protein Gel properties freeze-thaw stability Intermolecular interactions
下载PDF
Surrounding rock pressure in the tunnel portal section through moraine under freeze-thaw action
5
作者 CHEN Zhimin LIU Baoli +1 位作者 LIU Yaohui XU Jiangtao 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2480-2493,共14页
Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and c... Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions. 展开更多
关键词 MORAINES freeze-thaw cycles Direct shear test Surrounding rock pressure
下载PDF
Spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice in multiple dimensions during 1979 to 2020
6
作者 Yu Guo Xiaoli Wang +1 位作者 He Xu Xiyong Hou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期102-114,共13页
Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertica... Arctic sea ice is broadly regarded as an indicator and amplifier of global climate change.The rapid changes in Arctic sea ice have been widely concerned.However,the spatiotemporal changes in the horizontal and vertical dimensions of Arctic sea ice and its asymmetry during the melt and freeze seasons are rarely quantified simultaneously based on multiple sources of the same long time series.In this study,the spatiotemporal variation and freeze-thaw asymmetry of Arctic sea ice were investigated from both the horizontal and vertical dimensions during 1979–2020 based on remote sensing and assimilation data.The results indicated that Arctic sea ice was declining at a remarkably high rate of–5.4×10^(4) km^(2)/a in sea ice area(SIA)and–2.2 cm/a in sea ice thickness(SIT)during 1979 to 2020,and the reduction of SIA and SIT was the largest in summer and the smallest in winter.Spatially,compared with other sub-regions,SIA showed a sharper declining trend in the Barents Sea,Kara Sea,and East Siberian Sea,while SIT presented a larger downward trend in the northern Canadian Archipelago,northern Greenland,and the East Siberian Sea.Regarding to the seasonal trend of sea ice on sub-region scale,the reduction rate of SIA exhibited an apparent spatial heterogeneity among seasons,especially in summer and winter,i.e.,the sub-regions linked to the open ocean exhibited a higher decline rate in winter;however,the other sub-regions blocked by the coastlines presented a greater decline rate in summer.For SIT,the sub-regions such as the Beaufort Sea,East Siberian Sea,Chukchi Sea,Central Arctic,and Canadian Archipelago always showed a higher downward rate in all seasons.Furthermore,a striking freeze-thaw asymmetry of Arctic sea ice was also detected.Comparing sea ice changes in different dimensions,sea ice over most regions in the Arctic showed an early retreat and rapid advance in the horizontal dimension but late melting and gradual freezing in the vertical dimension.The amount of sea ice melting and freezing was disequilibrium in the Arctic during the considered period,and the rate of sea ice melting was 0.3×10^(4) km^(2)/a and 0.01 cm/a higher than that of freezing in the horizontal and vertical dimensions,respectively.Moreover,there were notable shifts in the melting and freezing of Arctic sea ice in 1997/2003 and 2000/2004,respectively,in the horizontal/vertical dimension. 展开更多
关键词 Arctic sea ice sea ice area sea ice thickness spatiotemporal variation freeze-thaw asymmetry
下载PDF
Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment
7
作者 Jie Huang Rongbin Jiang +1 位作者 Xiaobo Sun Yingyong Shuai 《Journal of Renewable Materials》 EI CAS 2024年第1期187-201,共15页
The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled ... The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction.This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate(SRFA)obtained from recycled fine aggregate concrete(RFAC)subjected to freeze-thaw(FT)cycles.Before and after carbonation,the properties of SRFA were evaluated.Carbonated second-generation recycled fine aggregate(CSRFA)at five substitution rates(0%,25%,50%,75%,100%)to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete(CSRFAC).The water absorption,porosity and mechanical properties of CSRFAC were tested,and its frost-resisting durability was evaluated.The results showed after carbonation treatment,the physical properties of SRFA was improved and met the requirements of II aggregate.The micro-hardness of the interfacial transition zone and attached mortar in CSRFA was 50.5%and 31.2%higher than that in SRFA,respectively.With the increase of CSRFA replacement rate,the water absorption and porosity of CSRFAC gradually decreased,and the mechanical properties and frost resistance of CSRFAC were gradually improved.Carbonation treatment effectively repairs the damage of SRFA caused by FT cycles and improves its application potential. 展开更多
关键词 Carbonation treatment REPAIR freeze-thaw cycles second-generation recycled fine aggregate
下载PDF
Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete
8
作者 Yang Li Sibo Jiang Ruixin Lan 《Structural Durability & Health Monitoring》 EI 2024年第3期255-276,共22页
Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of differe... Chloride (Cl−) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas(LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperaturecycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl−ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show thatthe minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. TheCl− ion concentration and growth rate increased with the increasing crack width. Based on the experimental modeland in accordance with Fick’s second law of diffusion, the Cl− ion diffusion equation was modified by introducingcorrection factors in consideration of the freeze-thaw temperature, crack width, and their coupling effect.The experimental and fitting results obtained from this model can provide excellent reference for practical engineeringapplications. 展开更多
关键词 Chloride ions freeze-thaw cycles cracks
下载PDF
PVA/PEG Hybrid Hydrogels Prepared by Freeze-thawing and High Energy Electron Beam Irradiation 被引量:2
9
作者 ZHAO Chunming LU Xueting +2 位作者 HU Qianqian LIU Shuai GUAN Shuang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第6期995-999,共5页
In this paper, poly(vinyl alcohol)(PVA) and PVA/poly(ethylene glycol)(PEG) hybrid hydrogels were synthesized by freeze-thawing or freeze-thawing followed by high energy electron beam irradiation. The influence... In this paper, poly(vinyl alcohol)(PVA) and PVA/poly(ethylene glycol)(PEG) hybrid hydrogels were synthesized by freeze-thawing or freeze-thawing followed by high energy electron beam irradiation. The influence of PEG molecular weight, mass ratios of PVA to PEG, thawing temperature and number of freeze-thawing(FT) cycles on the mechanical strength of PVA/PEG hydrogel was investigated. Also, the thermal behaviors were examined by differential scanning calorimetry(DSC) and the microstructttres were observed with scanning electron microscopy(SEM). The results suggest that the addition of PEG improves the mechanical strength of PVA hydrogel and the irradiation reduces both the strength of PVA/PEG hydrogel slightly and the degree of crystallinity. The improved properties suggest that PVA/PEG hydrogel can be a good candidate for the application in the biomedical. 展开更多
关键词 Poly(vinyl alcohol) Poly(ethylene glycol) High energy beam irradiation freeze-thawing HYDROGEL
原文传递
Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles 被引量:1
10
作者 WANG Dan LIU En-long +3 位作者 YANG Cheng-song LIU You-qian ZHU Sheng-xian YU Qi-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第1期242-255,共14页
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem... As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions. 展开更多
关键词 freeze-thaw cycles Frozen clay Dynamic triaxial test Dynamic mechanical properties
下载PDF
Effect of High Temperature Curing on the Frost Resistance of Recycled Aggregate Concrete and the Physical Properties of Second-Generation Recycled Coarse Aggregate under Freeze-Thaw Cycles 被引量:1
11
作者 Xintong Chen Pinghua Zhu +2 位作者 Xiancui Yan Lei Yang Huayu Wang 《Journal of Renewable Materials》 SCIE EI 2023年第6期2953-2967,共15页
With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environmen... With the emphasis on environmental issues,the recycling of waste concrete,even recycled concrete,has become a hot spot in the field of architecture.But the repeated recycling of waste concrete used in harsh environments is still a complex problem.This paper discusses the durability and recyclability of recycled aggregate concrete(RAC)as a prefabricated material in the harsh environment,the effect of high-temperature curing(60℃,80℃,and 100℃)on the frost resistance of RAC and physical properties of the second generation recycled coarse aggregate(RCA_(2))of RAC after 300 freeze-thaw cycles were studied.The frost resistance of RAC was characterized by compressive strength,relative dynamic elastic modulus,and mass loss.As the physical properties of RCA_(2),the apparent density,water absorption,and crushing value were measured.And the SEM images of RAC after 300 freeze-thaw cycles were shown.The results indicated that the frost resistance of RAC cured at 80℃ for 7 days was comparable to that cured in the standard condition(cured for 28 days at 20℃±2℃ and 95%humidity),and the RAC cured at 100℃ was slightly worse.However,the frost resistance of RAC cured at 60℃ deteriorated seriously.The RAC cured at 80℃ for 7 days is the best.Whether after the freeze-thaw cycle or not,the RCA that curd at 60℃,80℃,and 100℃ for 7 days can also meet the requirements of Grade III RCA and be used as the aggregate of non-bearing part of prefabricated concrete components.RCA_(2) which is cured at 80℃ for 7 days had the best physical properties. 展开更多
关键词 freeze-thaw cycles curing condition recycled aggregate concrete second-generation recycled coarse aggregate
下载PDF
Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles
12
作者 ZHANG Chi JIN Xiao-guang +1 位作者 HOU Chao HE Jie 《Journal of Mountain Science》 SCIE CSCD 2023年第1期227-241,共15页
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti... To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect. 展开更多
关键词 freeze-thaw cycles Anhydrite rock Physical and mechanical properties AE characteristics Damage mechanism
下载PDF
Freeze-thaw process induced by increased precipitation affects root growth of alpine steppe on the Tibetan Plateau
13
作者 QIN Xiao-jing NIE Xiao-jun +1 位作者 WANG Xiao-dan HONG Jiang-tao 《Journal of Mountain Science》 SCIE CSCD 2023年第10期3010-3017,共8页
The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,t... The response of vegetation productivity to precipitation is becoming a worldwide concern.Most reports on responses of vegetation to precipitation trends are based on the growth season.In the soil freeze/thaw process,the soil water phase and heat transport change can affect root growth,especially during the thawing process in early spring.A field experiment with increased precipitation(control,increased 25%and increased 50%)was conducted to measure the effects of soil water in early spring on above-and below-ground productivity in an alpine steppe over two growing seasons from June 2017 to September 2018.The increased 50%treatment significantly increased the soil moisture at the 10 cm depth,there was no difference in soil moisture between the increased 25%treatment and the control in the growing season,which was not consistent in the freeze/thaw process.Increased soil moisture during the non-growing season retarded root growth.Increased precipitation in the freezing-thawing period can partially offset the difference between the control and increased precipitation plots in both above-and below-ground biomass. 展开更多
关键词 freeze-thaw process PRECIPITATION Root length Plant coverage Alpine grassland
下载PDF
Effect of PVA Fiber on the Dynamic and Static Mechanical Properties of Concrete under Freeze-thaw Cycles at Extremely Low Temperature(-70℃)
14
作者 LIU Jun JIANG Ting +1 位作者 YANG Yuanquan ZHOU Yifei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期366-373,共8页
In order to study the effect of PVA fiber on the dynamic and static mechanical properties of low-temperature freeze-thaw concrete under the saturated surface dry state,different contents of PVA fiber were added to pre... In order to study the effect of PVA fiber on the dynamic and static mechanical properties of low-temperature freeze-thaw concrete under the saturated surface dry state,different contents of PVA fiber were added to prepare concrete in this experiment.The concrete was subjected to compression,flexural and SHPB impact tests combined with scanning electron microscopy for microstructure analysis,after different times of freeze-thaw cycles in the temperature range of 20-70℃.The experimental results show that the compressive strength of the PVA fiber reinforced concrete first increases and then decreases after freeze and thaw cycles,and the compressive strength is positively correlated with the fiber content.The flexural strength gradually decreases with freeze-thaw cycles.The flexural strength of the concrete with 1.2 kg/m^(3) of PVA fiber presents the lowest strength loss after 45 freeze and thaw cycles,which is about 14%.The dynamic failure strength gradually decreases with the increase of freeze-thaw times,and the reduction amplitude decreases with the increase of PVA fiber content.The best impact resistance is achieved when the PVA fiber dosage is 1.2 kg/m^(3). 展开更多
关键词 PVA fiber freeze-thaw cycle SHPB impact test MICROSTRUCTURE mechanical properties
下载PDF
The Effect of Different Freeze-Thaw Cycles on Mortar Gas Permeability and Pore Structure
15
作者 Wei Chen Ao Xu +3 位作者 Hejun Zhang Mingquan Sheng Yue Liang Frederic Skoczylas 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1623-1636,共14页
Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-free... Two different freeze-thaw cycles(FTC)are considered in this study to assess the related impact on gas permeability and micro-pore structure of a mortar.These are the water-freezing/water-thawing(WF-WT)and the air-freezing/air-thawing(AF-AT)cycles.The problem is addressed experimentally through an advanced nuclear magnetic resonance(NMR)technique able to provide meaningful information on the relationships among gas permeability,pore structure,mechanical properties,and the number of cycles.It is shown that the mortar gas permeability increases with the number of FTCs,the increase factor being 20 and 12.83 after 40 cycles for the WF-WT and AF-AT,respectively.The results also confirm that gas permeability hysteresis phenomena occur during the confining pressure loading and unloading process. 展开更多
关键词 MORTAR freeze-thaw cycles gas permeability pore structure NMR mechanical properties
下载PDF
Influence of relative compaction and degree of saturation on the deformation characteristics of bentonite under freeze-thaw cycles
16
作者 Hao Wang Xu Li +2 位作者 WenShao Xin Vladimir Nikolaevich Paramonov XueWen Zhao 《Research in Cold and Arid Regions》 CSCD 2023年第4期161-170,共10页
Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as... Bentonite,consisting of clay minerals of the montmorillonite group,has been widely used as an adsorbent and backfill material in nuclear waste disposal and groundwater remediation.It is challenging to use bentonite as a filling material in cold regions since bentonite is highly sensitive to thermal environmental changes,during which its bulk volume and microstructure change significantly.In this study,a series of one-dimensional and three-dimensional freeze-thaw tests were carried out within a closed system to investigate the influencing factors of the deformation of bentonite under freeze-thaw cycles.Results show that the initial soil water content greatly impacts bentonite's deformation during freeze-thaw cycles.For an initial higher degree of saturation(Sr),the expansion caused by the formation of ice lenses has a greater impact than the shrinkage induced by dehydration,ice-cementation,and so on.Conversely,bentonite tends to shrink at a lower degree of saturation during freezing.And the critical degree of saturation that determines bentonite's behavior of frost heave or frost shrinkage seems to be roughly 0.8.As the number of freeze-thaw cycles rises,initially uncompacted bentonite clay becomes more compacted,and initially compacted bentonite clay remains unchanged. 展开更多
关键词 BENTONITE Relative compaction Degree of saturation freeze-thaw cycles DEFORMATION
下载PDF
Pore evolution and shear characteristics of a soil-rock mixture upon freeze-thaw cycling
17
作者 LiYun Tang ShiYuan Sun +4 位作者 JianGuo Zheng Long Jin YongTang Yu Tao Luo Xu Duan 《Research in Cold and Arid Regions》 CSCD 2023年第4期179-190,共12页
The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided q... The changes in pore structure within soil-rock mixtures under freeze-thaw cycles in cold regions result in strength deterioration,leading to instability and slope failure.However,the existing studies mainly provided qualitative analysis of the changes in pore or strength of soil-rock mixture under freeze-thaw cycles.In contrast,few studies focused on the quantitative evaluation of pore change and the relationship between the freeze-thaw strength deterioration and pore change of soil-rock mixture.This study aims to explore the correlation between the micro-pore evolution characteristics and macro-mechanics of a soil-rock mixture after frequent freeze-thaw cycles during the construction and subsequent operation in a permafrost region.The pore characteristics of remolded soil samples with different rock contents(i.e.,25%,35%,45%,and 55%)subjected to various freeze-thaw cycles(i.e.,0,1,3,6,and 10)were quantitatively analyzed using nuclear magnetic resonance(NMR).Shear tests of soil-rock samples under different normal pressures were carried out simultaneously to explore the correlation between the soil strength changes and pore characteristics.The results indicate that with an increase in the number of freeze-thaw cycles,the cohesion of the soil-rock mixture generally decreases first,then increases,and finally decreases;however,the internal friction angle shows no apparent change.With the increase in rock content,the peak shear strength of the soil-rock mixture rises first and then decreases and peaks when the rock content is at 45%.When the rock content remains constant,as the number of freeze-thaw cycles rises,the shear strength of the sample reaches its peak after three freeze-thaw cycles.Studies have shown that with an increase in freeze-thaw cycles,the medium and large pores develop rapidly,especially for pores with a size of 0.2–20μm.Freeze-thaw cycling affects the internal pores of the soil-rock mixture by altering its skeleton and,therefore,impacts its macro-mechanical characteristics. 展开更多
关键词 freeze-thaw cycling Soil-rock mixture NMR Pore change Shear strength
下载PDF
Dynamic behaviors of water-saturated and frozen sandstone subjected to freeze-thaw cycles
18
作者 Feng Gao Cong Li +2 位作者 Xin Xiong Yanan Zhang Keping Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1476-1490,共15页
In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natura... In high-altitude cold areas,freeze-thaw(F-T)cycles induced by day-night and seasonal temperature changes cause numerous rock mass slope engineering disasters.To investigate the dynamic properties of rock in the natural environment of a high-altitude cold area,standard specimens were drilled from the slope of the Jiama copper mine in Tibet,and dynamic compression tests were performed on watersaturated and frozen sandstone with different numbers of F-T cycles(0,10,20,30,and 40)by the split Hopkinson pressure bar(SHPB)system with a cryogenic control system.The influence of water-saturated and frozen conditions on the dynamic performance of sandstone was investigated.The following conclusions are drawn:(1)With increasing strain rate,the attenuation factor(la)of water-saturated sandstone and the intensifying factor(li)of frozen sandstone linearly increase.As the number of F-T cycles increases,the dependence factor(ld)of water-saturated sandstone linearly decreases,whereas the ld of frozen sandstone linearly increases.(2)The prediction equation of the dynamic compressive strength of water-saturated and frozen sandstone is obtained,which can be used to predict the dynamic compressive strength of sandstone after various F-T cycles based on the strain rate.(3)The mesoscopic mechanism of water-saturated and frozen sandstone’s dynamic compressive strength evolution is investigated.The water softening effect causes the dynamic compressive strength of water-saturated sandstone to decrease,whereas the strengthening effect of pore ice causes it to increase.(4)The decrease in the relative dynamic compressive strength of water-saturated sandstone and the increase in the relative dynamic compressive strength of frozen sandstone can be attributed to the increased porosity. 展开更多
关键词 freeze-thaw(F-T)cycle damage Dynamic properties Split Hopkinson pressure bar(SHPB) Increasing rate of porosity
下载PDF
Effect of Freeze-Thaw Cycles on Chloride Transportation in Concrete: Prediction Model and Experiment
19
作者 Yongdong Yan Youdong Si +1 位作者 Chunhua Lu Keke Wu 《Structural Durability & Health Monitoring》 EI 2023年第3期225-238,共14页
This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary andfiber concrete with both theoretical and experimental methods.The proposed theoretical model takes into a... This research aims to investigate the effect of frost damage on chloride transportation mechanism in ordinary andfiber concrete with both theoretical and experimental methods.The proposed theoretical model takes into account the varying damage levels caused by concrete cover depth and freeze-thaw cycles,which are the two primary parameters affecting the expression of the chloride diffusion coefficient.In the experiment,three types of concrete were prepared:ordinary Portland concrete(OPC),polypropylenefiber concrete(PFC),and steelfiber concrete(SFC).These were then immersed in NaCl solution for 120 days after undergoing 10,25,and 50 freeze-thaw cycles.The damage coefficient of the tested concrete was determined by measuring the dynamic elas-tic modulus.The results indicated that the relative dynamic elasticity modulus of the specimens decreased with each freeze-thaw cycle,and the chloride diffusion coefficient of the specimens increased as the degree of frost degradation increased.Samples containing steel and polypropylenefibers exhibited greater resistance to cyclic water freezing compared to the controlled concrete withoutfibers.A model has been also developed that takes into account the damage caused by freezing-thawing cycles and the depth of the concrete,which can predict variations in free chloride concentration at different depths.The calculated values were in good agreement with the test results for depths between 10 to 30 mm.This new damage-induced diffusion model can helpfill the gap in research on the effects of freeze-thaw cycles on chloride diffusion. 展开更多
关键词 Damaged concrete steelfiber polypropylenefiber chloride ion freeze-thaw cycle
下载PDF
Freeze-thaw processes of active-layer soils in the Nanweng'he River National Natural Reserve in the Da Xing'anling Mountains,northern Northeast China 被引量:2
20
作者 RuiXia He HuiJun Jin +2 位作者 XiaoLi Chang YongPing Wang LiZhong Wang 《Research in Cold and Arid Regions》 CSCD 2018年第2期104-113,共10页
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and thei... The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation. 展开更多
关键词 Nanweng'he RIVER NATIONAL NATURAL RESERVE ACTIVE LAYER freeze-thawing processes moisture content vegetation effect
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部