期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simulation of frozen ground distribution in northeast China based on a surface frost number model 被引量:1
1
作者 ZHAN Daqing MAN Haoran +1 位作者 ZANG Shuying LI Miao 《Journal of Geographical Sciences》 SCIE CSCD 2022年第8期1581-1600,共20页
Against the background of global warming, environmental and ecological problems caused by frozen ground degradation have become a focus of attention for the scientific community. As the temperature rises, the permafro... Against the background of global warming, environmental and ecological problems caused by frozen ground degradation have become a focus of attention for the scientific community. As the temperature rises, the permafrost is degrading significantly in the frozen ground region of northeast China(FGRN China). At present, research on FGRN China is based mainly on data from meteorological stations, and the research period has been short.In this study, we analyzed spatial and temporal variation in the ground surface freezing index(GFI) and ground surface thawing index(GTI) from 1900 to 2017 for FGRN China, with the air freezing index(AFI) and air thawing index(ATI) using the University of Delaware(UDEL)monthly gridded air temperature dataset. The turning point year for annual mean air temperature(AMAT) was identified as 1985, and the turning point years for GFI and GTI were 1977 and 1996. The air temperature increased by 0.01 ℃ per year during 1900–2017, and the GFI and GTI increased at rates of –0.4 and 0.5 ℃ d per year before the turning point year;after the turning point, these rates were –0.7 and –2.1 ℃ d per year. We utilized a surface frost number model to study the distribution of frozen ground in FGRN China from 1900 to 2017.When the empirical coefficient E value is 0.57, the simulated frozen ground distribution is basically consistent with the existing frozen ground maps. The total area of permafrost in FGRN China decreased by 22.66×10^(4) km^(2) from 1900 to 2017, and the permafrost boundary moved northward with obvious degradation. The results of this study demonstrate the trend in permafrost boundary degradation in FGRN China, and provide basic data for research on the hydrological, climate, and ecological changes caused by permafrost degradation. 展开更多
关键词 permafrost degradation frozen ground distribution freezing/thawing indices surface frost number model northeast China
原文传递
Winter survival of microbial contaminants in soil:An in situ verification
2
作者 Antonio Bucci Vincenzo Allocca +4 位作者 Gino Naclerio Giovanni Capobianco Fabio Divino Francesco Fiorillo Fulvio Celico 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第1期131-138,共8页
The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the ... The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the winter period and during grazing, viable cells of faecal coliforms and faecal enterococci were detected only in the first 10 cm below ground, while,after the winter period and before the new seasonal grazing, a lower number of viable cells of both faecal indicators was detected only in some of the investigated soil profiles, and within the first 5 cm. Taking into consideration the results of specific investigations, we hypothesise that the non-uniform spatial distribution of grass roots within the studied soil can play an important role in influencing this phenomenon, while several abiotic factors do not play any significant role. Taking into account the local trend in the increase of air temperature, a different distribution of microbial pollution over time is expected in spring waters, in future climate scenarios. The progressive increase in air temperature will cause a progressive decrease in freeze/thaw cycles at higher altitudes, minimising cold shocks on microbial cells, and causing spring water pollution also during winter. 展开更多
关键词 Climate change Cold shock Faecal indicator Freeze/thaw cycle Microbial contamination
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部