Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves...Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.展开更多
A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of ...A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.展开更多
Electrical power generation from wind technology is the most rapidly growing technology due to its ample characteristics.Nevertheless,because of its stochastic feature,it has the unnecessary impact on the operations a...Electrical power generation from wind technology is the most rapidly growing technology due to its ample characteristics.Nevertheless,because of its stochastic feature,it has the unnecessary impact on the operations and stability of the power grid system.The fluctuation of the grid frequency problem,for example,is more pronounced.The fluctuation of the frequency in turn impacts even the collapse of the power system.To minimize such problems,a droop-vector control strategy applied on a doubly-fed induction machine based(DFIM)variable speed pumped storage(VSPS)system is proposed in this paper.This method is should be used as a wind power fluctuation compensation solution in the wind farm-grid integration system.The system model is made on the basis of the technique called a phasor model.The frequency spectrum analysis approach is used in the VSPS plant for determining the dynamic performances of the grid in case of contingencies including wind power fluctuation compensation.The software platform MATLAB/Simulink is used for verifying the performance of the proposed system.The results show that the method of the frequency spectrum analysis technique is effective for determining the wind power fluctuation and stability requirements in large power networks.The control strategy proposed in this paper implementing the VSC-DFIM based VSPS plant integrated with the power gird and wind farm network achieves a well-controlled power flow and stable grid frequency with the deviations being in acceptable ranges.展开更多
A new frequency domain method for charged particle identification, called Frequency Ratio Analysis(FRA), is proposed by analyzing the frequency spectra of proton pulses and alpha pulses acquired from a totally deple...A new frequency domain method for charged particle identification, called Frequency Ratio Analysis(FRA), is proposed by analyzing the frequency spectra of proton pulses and alpha pulses acquired from a totally depleted Si detector. Identification performance of the FRA method is evaluated and compared with two time domain methods, the current pulse amplitude method and the second moment method. The results show that the FRA method is not only feasible and effective but also superior to the two time domain methods, as it achieves an obvious increase in value of the figure-of-merit(FOM).展开更多
In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic millin...In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.展开更多
Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of su...Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.展开更多
The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis meth...The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis methods, and the complexity characteristics of crest-mantle boundary beneath the studied area and its adjacent region were determined. The results show that the place below epicenter can be taken as boundary, the northern side of which is Inner Mongolia axis with small complexity coefficient and the southern side of which is Huai'an basin with large complexity coefficient. The different spectrum patterns at the two sides of the epicenter were inferred from spectrum analysis. In the epicentral area, there have been multi-period magmatic eruptions since Meso-Cenozoic and craters exist at the surface. From the velocity imaging of middle and upper crust in Zhangbei seismic region it can be found that there are crustal low velocity bodies around the craters and also there are low velocity zones, which went into deep crust. It is suggested that the distinct zones of crust-mantle boundary complexity may be the margin, where the magma had intruded due to magma activity in Meso-Cenozoic. The southern side with large complexity coefficient is deep magmatic activity area and the northern side with small complexity coefficient is stable crust-mantle tectonics. The difference of crust-mantle complexity provides deep background for the development of strong earthquake.展开更多
Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin.The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it...Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin.The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it.Through traditional theoretical approaches,the eigen-periods of harbor basin with regular shapes can be obtained.In our study,we proposed a numerical model to simulate the behavior characteristics of the harbor waves.A finite difference numerical model based on the shallow water equations(SWE) is developed to simulate incoming tsunami and tidal waves.By analyzing the time series data of water surface wave amplitude variations at selected synthetic observation locations,we estimate the wave height and arrival time in coastal area.Furthermore,we use frequency spectrum analysis to investigate the natural frequencies from the data recorded at the synthetic observation stations.展开更多
基金the National Basic Research Program of China (Nos.2005 CB221504 and 2010CB226805)the Research Fund of the State Key Laboratory of Coal Resources and Mine Safety,CUMT (No.09KF08)the Foundation of the Henan Educational Committee (No.2010 A440003)
文摘Blasting and breaking of hard roof are main inducing causes of rock bursts in coal mines with danger of rock burst,and it is important to find out the frequency spectrum distribution laws of these dynamic stress waves and rock burst waves for researching the mechanism of rock burst.In this paper,Fourier transform as a micro-seismic signal conversion method of amplitude-time character to amplitude-frequency character is used to analyze the frequency spectrum characters of micro-seismic signal of blasting,hard roof breaking and rock bursts induced by the dynamic disturbance in order to find out the difference and relativity of different signals.The results indicate that blasting and breaking of hard roof are high frequency signals,and the peak values of dominant frequency of the signals are single.However,the results indicate that the rock bursts induced by the dynamic disturbance are low frequency signals,and there are two obvious peak values in the amplitude-frequency curve witch shows that the signals of rock bursts are superposition of low frequency signals and high frequency signals.The research conclusions prove that dynamic disturbance is necessary condition for rock bursts,and the conclusions provide a new way to research the mechanism of rock bursts.
基金supported by the Key Project of Science and Technology in an Action of Shanghai Scientific and Technological Innovation (No. 09231201600)the National Natural Science Foundation of China(No. 50823004)the Science and Technology Department of Sichuan Province
文摘A coupled dynamics computation model for metro vehicles, along with a steel-spring floating-slab track, is developed based on the theory of vehicle-track coupled dynamics. Using the developed model, the influences of the thickness, length and mass of floating-slab, spring rate and its arrangement space, running speed, etc. on the time and frequency domain characteristics of steel-spring fulcrum force are analyzed. The applicability of steel-spring floatingslab track is discussed through two integrated example cases of metro and buildings possessing distinct natural vibra- tion characteristics. It is concluded that, it is quite significant, in the optimization modular design of the parameters of steel-spring floating-slab track, to take the matching relationship of both the amplitude-frequency characteristics of steel-spring fulcrum force and natural vibration characteristics of integrated structures into comprehensive consideration. In this way the expensive steel-spring floating-slab track can be economically and efficiently utilized according to the site condition, and at the same time, the economic losses and bad social impact resulted from the resonance during usage of steel-spring floating-slab track can be avoided.
基金supported by the State Key Laboratory of the Smart Grid Protection and Control of China and“111”project:Large Scale Power Grid Protection and Safety Defense 2.0(BP0820024)。
文摘Electrical power generation from wind technology is the most rapidly growing technology due to its ample characteristics.Nevertheless,because of its stochastic feature,it has the unnecessary impact on the operations and stability of the power grid system.The fluctuation of the grid frequency problem,for example,is more pronounced.The fluctuation of the frequency in turn impacts even the collapse of the power system.To minimize such problems,a droop-vector control strategy applied on a doubly-fed induction machine based(DFIM)variable speed pumped storage(VSPS)system is proposed in this paper.This method is should be used as a wind power fluctuation compensation solution in the wind farm-grid integration system.The system model is made on the basis of the technique called a phasor model.The frequency spectrum analysis approach is used in the VSPS plant for determining the dynamic performances of the grid in case of contingencies including wind power fluctuation compensation.The software platform MATLAB/Simulink is used for verifying the performance of the proposed system.The results show that the method of the frequency spectrum analysis technique is effective for determining the wind power fluctuation and stability requirements in large power networks.The control strategy proposed in this paper implementing the VSC-DFIM based VSPS plant integrated with the power gird and wind farm network achieves a well-controlled power flow and stable grid frequency with the deviations being in acceptable ranges.
基金Supported by National Natural Science Foundation of China(11175254,11375264)
文摘A new frequency domain method for charged particle identification, called Frequency Ratio Analysis(FRA), is proposed by analyzing the frequency spectra of proton pulses and alpha pulses acquired from a totally depleted Si detector. Identification performance of the FRA method is evaluated and compared with two time domain methods, the current pulse amplitude method and the second moment method. The results show that the FRA method is not only feasible and effective but also superior to the two time domain methods, as it achieves an obvious increase in value of the figure-of-merit(FOM).
基金Project (No.IRT0837) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘In this paper, a series of experiments were performed by high speed milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) by use of polycrystalline diamond (PCD) tools. The characteristics of high speed machining (HSM) dynamic milling forces were investi- gated. The effects of the parameters of the process, i.e., cutting speed, feed per tooth, and depth of axial cut, on cutting forces were studied. The cutting force signals under different cutting speed conditions and different cutting tool wear stages were analyzed by frequency spectrum analysis. The trend and frequency domain aspects of the dynamic forces were evaluated and discussed. The results indicate that a characteristic frequency in cutting force power spectrum does in fact exist. The amplitudes increase with the increase of cutting speed and tool wear level, which could be applied to the monitoring of the cutting process.
基金supported by the National Key R&D Pro gram (2017YFB0902901)National Nature Science Founda tion of China (51725702, 51627811, 51707064)。
文摘Owing to the large-scale grid connection of new energy sources, several installed power electronic devices introduce sub-/supersynchronous inter-harmonics into power signals, resulting in the frequent occurrence of subsynchronous oscillations(SSOs). The SSOs may cause significant harm to generator sets and power systems;thus, online monitoring and accurate alarms for power systems are crucial for their safe and stable operation. Phasor measurement units(PMUs) can realize the dynamic real-time monitoring of power systems. Based on PMU phasor measurements, this study proposes a method for SSO online monitoring and alarm implementation for the main station of a PMU. First, fast Fourier transform frequency spectrum analysis is performed on PMU current phasor amplitude data to obtain subsynchronous frequency components. Second, the support vector machine learning algorithm is trained to obtain the amplitude threshold and subsequently filter out safe components and retain harmful ones. Finally, the adaptive duration threshold is determined according to frequency susceptibility, amplitude attenuation, and energy accumulation to decide whether to transmit an alarm signal. Experiments based on field data verify the effectiveness of the proposed method.
基金Joint Seismological Science Foundation of China (104027 and 102025).
文摘The ProP waveform data obtained from a deep seismic sounding profile, which ran through Zhangbei seismic region, were processed by means of both seismic wave complexity coefficient and frequency spectrum analysis methods, and the complexity characteristics of crest-mantle boundary beneath the studied area and its adjacent region were determined. The results show that the place below epicenter can be taken as boundary, the northern side of which is Inner Mongolia axis with small complexity coefficient and the southern side of which is Huai'an basin with large complexity coefficient. The different spectrum patterns at the two sides of the epicenter were inferred from spectrum analysis. In the epicentral area, there have been multi-period magmatic eruptions since Meso-Cenozoic and craters exist at the surface. From the velocity imaging of middle and upper crust in Zhangbei seismic region it can be found that there are crustal low velocity bodies around the craters and also there are low velocity zones, which went into deep crust. It is suggested that the distinct zones of crust-mantle boundary complexity may be the margin, where the magma had intruded due to magma activity in Meso-Cenozoic. The southern side with large complexity coefficient is deep magmatic activity area and the northern side with small complexity coefficient is stable crust-mantle tectonics. The difference of crust-mantle complexity provides deep background for the development of strong earthquake.
基金supported by the National Natural Science Foundation of China (Grant Nos.40574012 and 40676039)National Basic Research Program of China(Grant No. 2008CB425701)+1 种基金National High-tech R& D Program of China(Grant No. 2010AA012402)K. C. Wong Magna Fund in Ningbo University
文摘Resonance may occur when the periods of incoming waves are close to the eigen-periods of harbor basin.The amplified waves by resonance in harbor will induce serious wave hazards to harbor structures and vehicles in it.Through traditional theoretical approaches,the eigen-periods of harbor basin with regular shapes can be obtained.In our study,we proposed a numerical model to simulate the behavior characteristics of the harbor waves.A finite difference numerical model based on the shallow water equations(SWE) is developed to simulate incoming tsunami and tidal waves.By analyzing the time series data of water surface wave amplitude variations at selected synthetic observation locations,we estimate the wave height and arrival time in coastal area.Furthermore,we use frequency spectrum analysis to investigate the natural frequencies from the data recorded at the synthetic observation stations.