The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the...The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F and the average site amplification in different frequency bands of 1.0-5.0 Hz, 5.0-10.0 Hz and 1.0-10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance DAspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold ofPGA 〉 300 cm/s^2 or PGV 〉 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.展开更多
In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and m...In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is funda- mentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engi- neering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metro- politan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced con- crete high-rise building using background vibration noise.By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seis- mology and earthquake engineering projects for seismic hazard mitigation in urban areas.展开更多
We report the investigation on the performance of an amplification assisted difference frequency generation(AA-DFG) system driven by pulsed pump and continuous-wave primary signal lasers. A monolithic tandem lithium n...We report the investigation on the performance of an amplification assisted difference frequency generation(AA-DFG) system driven by pulsed pump and continuous-wave primary signal lasers. A monolithic tandem lithium niobate superlattice was employed as the nonlinear crystal with a uniform grating section for the DFG process, followed by a chirp section for the optical parametric amplification process. The impacts of pump pulse shape, primary signal power, input beam diameter, and crystal structure on the pump-to-idler conversion efficiency of the AA-DFG system were comprehensively studied by numerically solving the coupled wave equations. It is concluded that square pump pulse and high primary signal power are beneficial to high pump-to-idler conversion efficiency. In addition, tighter input beam focus and smaller DFG length proportion could redeem the reduction in conversion efficiency resulting from wider acceptance bandwidths for the input lasers. We believe that such systems combining the merits of high stability inherited from cavity-free configuration and high efficiency attributed from the cascaded nonlinear conversion should be of great interest to a wide community,especially when the pulse shaping technique is incorporated.展开更多
基金Nonprofit Industry Research Project of CEA under Grant No. 201208014National Natural Science Fund No. 51278473Environmental Protection Research Fund for Public Interest No. 201209040
文摘The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F and the average site amplification in different frequency bands of 1.0-5.0 Hz, 5.0-10.0 Hz and 1.0-10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance DAspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold ofPGA 〉 300 cm/s^2 or PGV 〉 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.
文摘In highly populated urban centers, traditional seismic survey sources can no longer be properly applied due to restrictions in modern civilian life styles. The ambient vibration noise, including both microseisms and microtremor, though are generally weak but available anywhere and anytime, can be an ideal supplementary source for conducting seismic surveys for engineering seismology and earthquake engineering. This is funda- mentally supported by advanced digital signal processing techniques for effectively extracting the useful information out from the noise. Thus, it can be essentially regarded as a passive seismic method. In this paper we first make a brief survey of the ambient vibration noise, followed by a quick summary of digital signal processing for passive seismic surveys. Then the applications of ambient noise in engi- neering seismology and earthquake engineering for urban settings are illustrated with examples from Beijing metro- politan area. For engineering seismology the example is the assessment of site effect in a large area via microtremor observations. For earthquake engineering the example is for structural characterization of a typical reinforced con- crete high-rise building using background vibration noise.By showing these examples we argue that the ambient noise can be treated as a new source that is economical, practical, and particularly valuable to engineering seis- mology and earthquake engineering projects for seismic hazard mitigation in urban areas.
基金National Natural Science Foundation of China(NSFC)(61505236)Key Laboratory Foundation of Chinese Academy of Sciences(CAS)(CXJJ-15S099,CXJJ-17S026)Innovation Foundation of Shanghai Institute of Technical Physics(CX-54)
文摘We report the investigation on the performance of an amplification assisted difference frequency generation(AA-DFG) system driven by pulsed pump and continuous-wave primary signal lasers. A monolithic tandem lithium niobate superlattice was employed as the nonlinear crystal with a uniform grating section for the DFG process, followed by a chirp section for the optical parametric amplification process. The impacts of pump pulse shape, primary signal power, input beam diameter, and crystal structure on the pump-to-idler conversion efficiency of the AA-DFG system were comprehensively studied by numerically solving the coupled wave equations. It is concluded that square pump pulse and high primary signal power are beneficial to high pump-to-idler conversion efficiency. In addition, tighter input beam focus and smaller DFG length proportion could redeem the reduction in conversion efficiency resulting from wider acceptance bandwidths for the input lasers. We believe that such systems combining the merits of high stability inherited from cavity-free configuration and high efficiency attributed from the cascaded nonlinear conversion should be of great interest to a wide community,especially when the pulse shaping technique is incorporated.