The emerging of commercial high-voltage gallium nitride(GaN) power devices provides extraordinary switching performance over silicone devices, which enables high-voltage power conversion switching at megahertz range.S...The emerging of commercial high-voltage gallium nitride(GaN) power devices provides extraordinary switching performance over silicone devices, which enables high-voltage power conversion switching at megahertz range.Such outstanding features also pose strong challenges for device packaging design since the package parasitics can significantly influence the device switching characteristics, and thus can shadow the advantages brought by GaN devices. Designers have been dealing with these challenges brought by high du/dt and high-frequency switching operation even since the silicon(Si) era when fast switching Si MOSFET is first developed and came up with lots of inspiring advanced power module packaging structures to mitigate the problems.This paper presents a review of advanced power module packaging and integration structures that are suitable for high frequency power conversion.The review covers the heritage from the high frequency Si MOSFET packaging to the state-of-the-art for GaN devices.展开更多
We report on frequency doubling of high-energy,high repetition rate ns pulses from a cryogenically gas cooled multi-slab ytterbium-doped yttrium aluminum garnet laser system,Bivoj/DiPOLE,using a type-I phase matched l...We report on frequency doubling of high-energy,high repetition rate ns pulses from a cryogenically gas cooled multi-slab ytterbium-doped yttrium aluminum garnet laser system,Bivoj/DiPOLE,using a type-I phase matched lithium triborate crystal.We achieved conversion to 515 nm with energy of 95 J at repetition rate of 10 Hz and conversion efficiency of 79%.High conversion efficiency was achieved due to successful depolarization compensation of the fundamental input beam.展开更多
We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the onl...We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the only reason for the phenomenon. By designing a wedge Nd:YVO4 crystal as the gain medium, the unexpected a-polarization is completely suppressed in the entire range of pump powers, and the polarization stability of the expected zc-polarized output is enhanced. With the output power increasing from threshold to the maximum power, no a-polarization lasing is observed. As a result, 25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.展开更多
In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in stra...In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in strain dependent dielectric material incorporating carrier heating (CH) effects. The consideration of CH in modulation and demodulation is prime importance for the adding of new dimension in analysis of amplification of acoustic helicon wave. By using the dispersion relation, threshold pump electric filed and growth rate of unstable mode from the modulation and demodulation of the high power helicon wave well above from the threshold value will be discussed in the present analysis. The numerical analysis is applied to a strain dependent dielectric material, BaTiO3 at room temperature and irradiated with high power helicon wave of frequency 1.78 × 1014 Hz. This material is very sensitive to the pump intensities, therefore during studies, Gaussian shape of the helicon pump wave is considered during the propagation in stain dependent dielectric material and opto-acoustic wave in the form of Gaussian profile (ω0,κ0) is induced longitudinally along the crystallographic plane of BaTiO3. Its variation is caused by the available magnetic field (ωc), interaction length (z) and pulsed duration of interaction (τ). From the analysis of numerical results, the incorporation of CH effect can effectively modify the magnitude of modulation or demodulation of the amplitude of high power helicon laser wave through diffusion process. Not only the amplitude modulation and demodulation of the wave, the diffusion of the CH effectively modifies the growth rate of unstable mode of frequency in BaTiO3. The propagation of the threshold electric field shows the sinusoidal or complete Gaussian profile, whereas this profile is found to be completely lost in growth of unstable mode. It has also been seen that the growth rate is observed to be of the order of 108 - 1010 s-1 but from diffusion of carrier heating, and that its order is enhanced from 1010 - 1012 s-1 with the variation of the magnetized frequency from 1 to 2.5 × 1014 Hz.展开更多
FM-to-AM(frequency modulation-to-amplitude modulation)conversion caused by nonuniform spectral transmission of broadband beam is harmful to high-power laser facility.Smoothing by spectral dispersion(SSD)beam is a spec...FM-to-AM(frequency modulation-to-amplitude modulation)conversion caused by nonuniform spectral transmission of broadband beam is harmful to high-power laser facility.Smoothing by spectral dispersion(SSD)beam is a special broadband beam for its monochromatic feature at the given time and space on the near field.The traditional method which uses the optical spectral transfer function as filters cannot accurately describe its AM characteristics.This paper presents the theoretical analysis of the etalon effect for SSD beam.With a low-order approximation,the analytic model of the temporal shape of SSD beam is obtained for the first time,which gives the detailed AM characteristics at local and integral aspects,such as the variation of ripples width and amplitude in general situation.We also analyze the FM-to-AM conversion on the focal plane;in the focusing process,the lens simply acts as an integrator to smooth the AM of SSD beam.Because AM control is necessary for the near field to avoid optics damage and for the far field to ensure an optimal interaction of laser-target,our investigations could provide some important phenomena and rules for pulse shape control.展开更多
The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing throug...The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.展开更多
系统研究了窄线宽低噪声单频连续光纤激光器、高能量纳秒长脉冲单频光纤激光器以及高峰值功率纳秒短脉冲光纤激光器三类高性能光纤激光器:实现了工作于1、1.5及2μm波段的单频连续光纤激光器,典型光谱线宽小于3 k Hz,强度噪声接近于散...系统研究了窄线宽低噪声单频连续光纤激光器、高能量纳秒长脉冲单频光纤激光器以及高峰值功率纳秒短脉冲光纤激光器三类高性能光纤激光器:实现了工作于1、1.5及2μm波段的单频连续光纤激光器,典型光谱线宽小于3 k Hz,强度噪声接近于散粒噪声极限;实现了高能量单频光纤激光器,脉冲能量超过200μJ,重复频率20 k Hz,脉冲宽度100~500 ns,激光波长位于1.5μm波段;实现了高峰值功率纳秒短脉冲光纤激光器,峰值功率超过700 k W,重复频率10 k Hz,脉冲宽度3 ns;同时还实现了高重频高峰值功率纳秒短脉冲光纤激光器,峰值功率超过200 W,重复频率3 MHz,脉冲宽度1~5 ns。文中阐述了以上几类高性能光纤激光器在激光雷达探测系统中的应用前景。展开更多
文摘The emerging of commercial high-voltage gallium nitride(GaN) power devices provides extraordinary switching performance over silicone devices, which enables high-voltage power conversion switching at megahertz range.Such outstanding features also pose strong challenges for device packaging design since the package parasitics can significantly influence the device switching characteristics, and thus can shadow the advantages brought by GaN devices. Designers have been dealing with these challenges brought by high du/dt and high-frequency switching operation even since the silicon(Si) era when fast switching Si MOSFET is first developed and came up with lots of inspiring advanced power module packaging structures to mitigate the problems.This paper presents a review of advanced power module packaging and integration structures that are suitable for high frequency power conversion.The review covers the heritage from the high frequency Si MOSFET packaging to the state-of-the-art for GaN devices.
基金This work was supported by the European Regional Development Fund and the state budget of the Czech Republic project HiLASE CoE(CZ.02.1.01/0.0/0.0/15_006/0000674)the Horizon 2020 Framework Programme(H2020)(739573).
文摘We report on frequency doubling of high-energy,high repetition rate ns pulses from a cryogenically gas cooled multi-slab ytterbium-doped yttrium aluminum garnet laser system,Bivoj/DiPOLE,using a type-I phase matched lithium triborate crystal.We achieved conversion to 515 nm with energy of 95 J at repetition rate of 10 Hz and conversion efficiency of 79%.High conversion efficiency was achieved due to successful depolarization compensation of the fundamental input beam.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA030203)the National Basic Research Program of China(Grant No.2010CB923101)+1 种基金the National Natural Science Foundation of China(Grant No.61008001)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-2)
文摘We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the only reason for the phenomenon. By designing a wedge Nd:YVO4 crystal as the gain medium, the unexpected a-polarization is completely suppressed in the entire range of pump powers, and the polarization stability of the expected zc-polarized output is enhanced. With the output power increasing from threshold to the maximum power, no a-polarization lasing is observed. As a result, 25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.
文摘In the present communication, the hydrodynamic model is used to investigate the amplitude modulation as well as demodulation of an electromagnetic wave of high power helicon pump wave into another helicon wave in strain dependent dielectric material incorporating carrier heating (CH) effects. The consideration of CH in modulation and demodulation is prime importance for the adding of new dimension in analysis of amplification of acoustic helicon wave. By using the dispersion relation, threshold pump electric filed and growth rate of unstable mode from the modulation and demodulation of the high power helicon wave well above from the threshold value will be discussed in the present analysis. The numerical analysis is applied to a strain dependent dielectric material, BaTiO3 at room temperature and irradiated with high power helicon wave of frequency 1.78 × 1014 Hz. This material is very sensitive to the pump intensities, therefore during studies, Gaussian shape of the helicon pump wave is considered during the propagation in stain dependent dielectric material and opto-acoustic wave in the form of Gaussian profile (ω0,κ0) is induced longitudinally along the crystallographic plane of BaTiO3. Its variation is caused by the available magnetic field (ωc), interaction length (z) and pulsed duration of interaction (τ). From the analysis of numerical results, the incorporation of CH effect can effectively modify the magnitude of modulation or demodulation of the amplitude of high power helicon laser wave through diffusion process. Not only the amplitude modulation and demodulation of the wave, the diffusion of the CH effectively modifies the growth rate of unstable mode of frequency in BaTiO3. The propagation of the threshold electric field shows the sinusoidal or complete Gaussian profile, whereas this profile is found to be completely lost in growth of unstable mode. It has also been seen that the growth rate is observed to be of the order of 108 - 1010 s-1 but from diffusion of carrier heating, and that its order is enhanced from 1010 - 1012 s-1 with the variation of the magnetized frequency from 1 to 2.5 × 1014 Hz.
基金supported by the National Natural Science Foundation of China(No.11404306)the Presidential Foundation of the China Academy of Engineering Physics(No.YZJJLX2016008)
文摘FM-to-AM(frequency modulation-to-amplitude modulation)conversion caused by nonuniform spectral transmission of broadband beam is harmful to high-power laser facility.Smoothing by spectral dispersion(SSD)beam is a special broadband beam for its monochromatic feature at the given time and space on the near field.The traditional method which uses the optical spectral transfer function as filters cannot accurately describe its AM characteristics.This paper presents the theoretical analysis of the etalon effect for SSD beam.With a low-order approximation,the analytic model of the temporal shape of SSD beam is obtained for the first time,which gives the detailed AM characteristics at local and integral aspects,such as the variation of ripples width and amplitude in general situation.We also analyze the FM-to-AM conversion on the focal plane;in the focusing process,the lens simply acts as an integrator to smooth the AM of SSD beam.Because AM control is necessary for the near field to avoid optics damage and for the far field to ensure an optimal interaction of laser-target,our investigations could provide some important phenomena and rules for pulse shape control.
文摘The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.
文摘系统研究了窄线宽低噪声单频连续光纤激光器、高能量纳秒长脉冲单频光纤激光器以及高峰值功率纳秒短脉冲光纤激光器三类高性能光纤激光器:实现了工作于1、1.5及2μm波段的单频连续光纤激光器,典型光谱线宽小于3 k Hz,强度噪声接近于散粒噪声极限;实现了高能量单频光纤激光器,脉冲能量超过200μJ,重复频率20 k Hz,脉冲宽度100~500 ns,激光波长位于1.5μm波段;实现了高峰值功率纳秒短脉冲光纤激光器,峰值功率超过700 k W,重复频率10 k Hz,脉冲宽度3 ns;同时还实现了高重频高峰值功率纳秒短脉冲光纤激光器,峰值功率超过200 W,重复频率3 MHz,脉冲宽度1~5 ns。文中阐述了以上几类高性能光纤激光器在激光雷达探测系统中的应用前景。