Severe disturbances in a power network can cause the system frequency to exceed the safe operating range.As the last defensive line for system emergency control,under frequency load shedding(UFLS)is an important metho...Severe disturbances in a power network can cause the system frequency to exceed the safe operating range.As the last defensive line for system emergency control,under frequency load shedding(UFLS)is an important method for preventing a wide range of frequency excursions.This paper proposes a hierarchical UFLS scheme of“centralized real-time decision-making and decentralized real-time control”for inter-connected systems.The centralized decision-layer of the scheme takes into account the importance of the load based on the equivalent transformation of kinetic energy(KE)and potential energy(PE)in the transient energy function(TEF),while the load PE is used to determine the load shedding amount(LSA)allocation in different loads after faults in real-time.At the same time,the influence of inertia loss is considered in the calculation of unbalanced power,and the decentralized control center is used to implement the one-stage UFLS process to compensate for the unbalanced power.Simulations are carried out on the modified New England 10-generator 39-bus system and 197-bus system in China to verify the performance of the proposed scheme.The results show that,compared with other LSA allocation indicators,the proposed alloca-tion indicators can achieve better fnadir and td.At the same time,compared with other multi-stage UFLS schemes,the proposed scheme can obtain the maximum fnadir with a smaller LSA in scenarios with high renewable energy sources(RES)penetration.展开更多
基金supported in part by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”under Grant 2021YFB2400800.
文摘Severe disturbances in a power network can cause the system frequency to exceed the safe operating range.As the last defensive line for system emergency control,under frequency load shedding(UFLS)is an important method for preventing a wide range of frequency excursions.This paper proposes a hierarchical UFLS scheme of“centralized real-time decision-making and decentralized real-time control”for inter-connected systems.The centralized decision-layer of the scheme takes into account the importance of the load based on the equivalent transformation of kinetic energy(KE)and potential energy(PE)in the transient energy function(TEF),while the load PE is used to determine the load shedding amount(LSA)allocation in different loads after faults in real-time.At the same time,the influence of inertia loss is considered in the calculation of unbalanced power,and the decentralized control center is used to implement the one-stage UFLS process to compensate for the unbalanced power.Simulations are carried out on the modified New England 10-generator 39-bus system and 197-bus system in China to verify the performance of the proposed scheme.The results show that,compared with other LSA allocation indicators,the proposed alloca-tion indicators can achieve better fnadir and td.At the same time,compared with other multi-stage UFLS schemes,the proposed scheme can obtain the maximum fnadir with a smaller LSA in scenarios with high renewable energy sources(RES)penetration.