期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter 被引量:1
1
作者 陆宝乐 黄圣鸿 +3 位作者 尹默娟 陈浩伟 任兆玉 白晋涛 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第4期54-57,共4页
By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm i... By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB. 展开更多
关键词 Wavelength-Tunable Single frequency Ytterbium-Doped Fiber Laser with loop Mirror Filter FBG FSR
下载PDF
Study on Frequency Selective Surfaces withSquare Loop Slots
2
作者 Chen Guorui Ma Jinping +1 位作者 Li Chunhui Chen Yilin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第4期11-16,共6页
关键词 FSS Study on frequency Selective Surfaces withSquare loop Slots
下载PDF
A 2-step GPS carrier tracking loop for urban vehicle applications 被引量:1
3
作者 Hongyang Zhang Luping Xu +1 位作者 Yue Jian Xiaochen Ma 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期817-826,共10页
Global positioning system (GPS) for vehicle applications in the urban area is challenged by low signal intensity. The carrier loop based on fast Fourier transform (FFT) can obtain a high signal to noise ratio (SNR) ga... Global positioning system (GPS) for vehicle applications in the urban area is challenged by low signal intensity. The carrier loop based on fast Fourier transform (FFT) can obtain a high signal to noise ratio (SNR) gain by increasing the observation time. However, this leads to a major problem that the acceleration cannot be ignored. The performance of the FFT-based loop will decline with the acceleration increasing. This paper discusses the effect of the dynamic on FFT first. Then a high performance carrier tracking loop for weak GPS L5 signals is proposed. It combines discrete chirp-Fourier transform (DCFT) and the phase fitting method to estimate Doppler frequency and Doppler rate simultaneously. First, a sequence of integration results is used to perform DCFT to estimate coarse Doppler frequency and Doppler rate. Second, the phase of the sequence is calculated and used to perform linear fitting. By the phase fitting method, the fine Doppler frequency and Doppler rate can be estimated. The computation cost is small because the integration results are used and the phase fitting method needs only coarse estimates of Doppler frequency and Doppler rate. Compared with FFT and DCFT, the precision of the phase fitting method is not limited by the resolution. Thus the proposed loop can get high precision and low carrier to noise ratio (C/N-0) tracking threshold. Simulation results show this loop has a great improvement than conventional loops for urban weak-signal applications. 展开更多
关键词 satellite navigation RECEIVER signal processing frequency lock loop
下载PDF
Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro 被引量:4
4
作者 Yang REN Zhong-he JIN Yan CHEN Hui-lian MA 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第11期942-950,共9页
Proportional integrator (PI) is always adopted in the resonant frequency servo loop in a resonator micro optic gyro (RMOG). The oscillation phenomenon is observed when adjusting the loop gain surpassing a threshold. T... Proportional integrator (PI) is always adopted in the resonant frequency servo loop in a resonator micro optic gyro (RMOG). The oscillation phenomenon is observed when adjusting the loop gain surpassing a threshold. This phenomenon limits system performance on step response speed and residual error. Based on the experiment system, a simulation model was set up. Further analysis shows that the threshold gain is related to the system loop filter setting and the loop delay. The traditional PI frequency servo loop technique in the RMOG system cannot keep up with the environment's disturbance quickly enough, which leads to a large residual error. A compensating method is proposed to optimize the tracking performance, solve the oscillation problem, and speed up the system response. Simulation and experiment results show that the compensated system is superior in performance. It has less residual error in the stable state and is 10 times quicker than the uncompensated system on the step response. 展开更多
关键词 Resonator micro optic gyro (RMOG) Resonance frequency servo loop Phase compensating method
原文传递
Digital-analog hybrid optical phase-lock loop for optical quadrature phase-shift keying 被引量:5
5
作者 Shaowen Lu Yu Zhou +8 位作者 Funan Zhu Jianfeng Sun Yan Yang Ren Zhu Shengnan Hu Xiaoxi Zhang Xiaolei Zhu Xia Hou Weibiao Chen 《Chinese Optics Letters》 SCIE EI CAS CSCD 2020年第9期20-25,共6页
We analyze a feasible high-sensitivity homodyne coherent optical receiver for demodulating optical quadrature phase-shift keying(QPSK). A fourth-power phase-lock loop based on a digital look-up table is used. Consider... We analyze a feasible high-sensitivity homodyne coherent optical receiver for demodulating optical quadrature phase-shift keying(QPSK). A fourth-power phase-lock loop based on a digital look-up table is used. Considering the non-negligible loop delay, we optimize the loop natural frequency. Without error correction coding, a sensitivity of -37 dBm/-35 dBm is achieved, while the bit error rate is below 10-9 at 2.5 Gbaud/5 Gbaud rate.For the QPSK communication system, the bit rate is twice the baud rate. The loop natural frequency is 0.647 Mrad/s, and the minimized steady-state phase-error standard deviation is 3.83°. 展开更多
关键词 coherent optical communication quadrature phase-shift keying phase-lock loop loop natural frequency
原文传递
A 0.8–4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications
6
作者 赵远新 高源培 +2 位作者 李巍 李宁 任俊彦 《Journal of Semiconductors》 EI CAS CSCD 2015年第1期125-139,共15页
A 0.8–4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications is successfully realized by the 130 nm CMOS process. A series of novel methods are proposed in this paper.Two band DCOs... A 0.8–4.2 GHz monolithic all-digital PLL based frequency synthesizer for wireless communications is successfully realized by the 130 nm CMOS process. A series of novel methods are proposed in this paper.Two band DCOs with high frequency resolution are utilized to cover the frequency band of interest, which is as wide as 2.5 to 5 GHz. An overflow counter is proposed to prevent the "pulse-swallowing" phenomenon so as to significantly reduce the locking time. A NTW-clamp digital module is also proposed to prevent the overflow of the loop control word. A modified programmable divider is presented to prevent the failure operation at the boundary.The measurement results show that the output frequency range of this frequency synthesizer is 0.8–4.2 GHz. The locking time achieves a reduction of 84% at 2.68 GHz. The best in-band and out-band phase noise performances have reached –100 d Bc/Hz, and –125 d Bc/Hz respectively. The lowest reference spur is –58 d Bc. 展开更多
关键词 fractional-N frequency synthesizer all-digital phase-locked loop phase noise reference spur CMOS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部