Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work ...Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.展开更多
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ...With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that ...A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.展开更多
We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of t...We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of the two lasers in the TS-DFB laser, the sideband optical injection locking technique is employed. A high-quality linear frequency-modulated signal is achieved from the TS-DFB laser. Utilizing the proposed LIDAR system, the distance and velocity of a target can be measured accurately. The maximum relative errors of distance and velocity measurement are 1.6% and 3.18%, respectively.展开更多
Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient im...Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods.展开更多
Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from...Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from the estimated phase of the received signal which is wrapped into (0, 2π]. By integrating Doppler frequency shifts, the variation of range can be estimated and used as an auxiliary information to help eliminating the corresponding range ambiguity. The performance of the new technique is evaluated by simulations. The results show that this technique is robust to sever phase noise and can be used effectively for ambiguity elimination of the modified sinusoidal frequency modulated continuous wave radar.展开更多
<div style="text-align:justify;"> A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat ...<div style="text-align:justify;"> A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications. </div>展开更多
文摘Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.
基金supported by the National Basic Research Program of China(2011CB707001)the Fundamental Research Funds for the Central Universities(106112015CDJXY500001CDJZR165505)
文摘With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
文摘A technique for measuring the linearity of a linearly frequency-modulated continuous wave (LFM-CW) signal is presented. It uses a delay-line and a mixer to sense the slope of the output of a sweep oscillator, so that the original form of frequency function deviated from idealized linear slope is retrieved by means of spectrum analysis. Consequently,the linearity of the LFM signal is determined. The formulation is performed based on the principle that an angle-modulated signal can be approximated by an amplitude-modulated signal if the modulation coefficient is sufficiently small. To examine the validity of the procedure and to study the effect of each parameter on the accuracy of measurement, a number of computer simulations has been made. The results of simulation show that the error of the measurement is less than 2%.
基金This work was supported in part by the National Key R&D Program of China(No.2018YFA0704402)National Natural Science Foundation of China(Nos.61974165 and 61975075)+1 种基金National Natural Science Foundation of China for the Youth(No.62004105)Science and Technology Project,and Natural Science Foundation of Jiangsu Province(No.BE2019101)。
文摘We demonstrate a high-resolution frequency-modulated continuous-wave dual-frequency LIDAR system based on a monolithic integrated two-section(TS) distributed feedback(DFB) laser. In order to achieve phase locking of the two lasers in the TS-DFB laser, the sideband optical injection locking technique is employed. A high-quality linear frequency-modulated signal is achieved from the TS-DFB laser. Utilizing the proposed LIDAR system, the distance and velocity of a target can be measured accurately. The maximum relative errors of distance and velocity measurement are 1.6% and 3.18%, respectively.
文摘Adaptive digital self-interference cancellation(ADSIC)is a significant method to suppress self-interference and improve the performance of the linear frequency modulated continuous wave(LFMCW)radar.Due to efficient implementation structure,the conventional method based on least mean square(LMS)is widely used,but its performance is not sufficient for LFMCW radar.To achieve a better self-interference cancellation(SIC)result and more optimal radar performance,we present an ADSIC method based on fractional order LMS(FOLMS),which utilizes the multi-path cancellation structure and adaptively updates the weight coefficients of the cancellation system.First,we derive the iterative expression of the weight coefficients by using the fractional order derivative and short-term memory principle.Then,to solve the problem that it is difficult to select the parameters of the proposed method due to the non-stationary characteristics of radar transmitted signals,we construct the performance evaluation model of LFMCW radar,and analyze the relationship between the mean square deviation and the parameters of FOLMS.Finally,the theoretical analysis and simulation results show that the proposed method has a better SIC performance than the conventional methods.
基金Sponsored by the Ministerial Level Advanced Research Foundation (323010101-50)
文摘Modified implementation architecture for sinusoidal frequency modulation is introduced to extract the range information from the received radar echo. Range ambiguity problem arises because the range is calculated from the estimated phase of the received signal which is wrapped into (0, 2π]. By integrating Doppler frequency shifts, the variation of range can be estimated and used as an auxiliary information to help eliminating the corresponding range ambiguity. The performance of the new technique is evaluated by simulations. The results show that this technique is robust to sever phase noise and can be used effectively for ambiguity elimination of the modified sinusoidal frequency modulated continuous wave radar.
文摘<div style="text-align:justify;"> A scheme of frequency sweep linearization of semiconductor lasers using a feed-back loop based on amplitude-frequency response is demonstrated in this paper. The beat frequency signal is obtained by self-heterodyne detection. The frequency changes are converted to the envelope of beat frequency signal after amplitude-frequency response. The active frequency sweep linearization is realized by feeding envelope deviations back to the drive currents of the lasers by a feedback loop. A simulation model is built to verify this scheme by Simulink. This scheme does not need high-performance, expensive lasers, complex linearization or tedious post-processing processes, which are of great significance for related applications. </div>