Photovoltaic(PV)and battery energy storage systems(BESSs)are key components in the energy market and crucial contributors to carbon emission reduction targets.These systems can not only provide energy but can also gen...Photovoltaic(PV)and battery energy storage systems(BESSs)are key components in the energy market and crucial contributors to carbon emission reduction targets.These systems can not only provide energy but can also generate considerable revenue by providing frequency regulation services and participating in carbon trading.This study proposes a bidding strategy for PV and BESSs operating in joint energy and frequency regulation markets,with a specific focus on carbon reduction benefits.A two-stage bidding framework that optimizes the profit of PV and BESSs is presented.In the first stage,the day-ahead energy market takes into account potential real-time forecast deviations.In the second stage,the real-time balancing market uses a rolling optimization method to account for multiple uncertainties.Notably,a real-time frequency regulation control method is proposed for the participation of PV and BESSs in automatic generation control(AGC).This is particularly relevant given the uncertainty of grid frequency fluctuations in the optimization model of the real-time balancing market.This control method dynamically assigns the frequency regulation amount undertaken by the PV and BESSs according to the control interval in which the area control error(ACE)occurs.The case study results demonstrate that the proposed bidding strategy not only enables the PV and BESSs to effectively participate in the grid frequency regulation response but also yields considerable carbon emission reduction benefits and effectively improves the system operation economy.展开更多
Frequency regulation of voltage source converter-based multi-terminal high-voltage direct current(VSC-MTDC)system with offshore wind farms enhances the frequency stability by compensating the power for a disturbed AC ...Frequency regulation of voltage source converter-based multi-terminal high-voltage direct current(VSC-MTDC)system with offshore wind farms enhances the frequency stability by compensating the power for a disturbed AC system.However,it is difficult to reasonably allocate frequency-regulation resources due to a lack of coordination mechanisms between wind farms and the MTDC system.Moreover,it is difficult for the frequency control of the wind farms to manage changes in wind speed;and the risk of wind-turbine stalls is high.Thus,based on the kinetic energy of wind turbines and the power margin of the converters,the frequency-regulation capability of wind turbines is evaluated,and a dynamic frequency-support scheme considering the real-time frequency-support capability of the wind turbines and system frequency evolution is proposed to improve the frequency-support performance.A power adaptation technique at variable wind speeds is developed;the active power in the frequency-support stage and restoration stage is switched according to the wind speed.A hierarchical zoning frequency-regulation scheme is designed to use the frequency-regulation resources of different links in the MTDC system with wind farms.The simulation results show that the novel frequency-regulation strategy maintains frequency stability with wind-speed changes and avoids multiple frequency dips.展开更多
The high renewable penetrated power system has severe frequency regulation problems.Distributed resources can provide frequency regulation services but are limited by com-munication time delay.This paper proposes a co...The high renewable penetrated power system has severe frequency regulation problems.Distributed resources can provide frequency regulation services but are limited by com-munication time delay.This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service.Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation.We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance.Besides,we study communication resources allocation solution in high renewable energy penetrated power systems.We provide a case study based on the HRP-38 system.Results show communication time delay decreases distributed resources'ability to provide frequency regulation service.On the other hand,allocating more communication resources to distributed resources'communica-tion services improves their frequency regulation performance.For power systems with renewable energy penetration above 70%,required communications resources are about five times as many as 30%renewable energy penetrated power systems to keep frequency performance the same.Index Terms-Communication resources allocation,commun-ication time delay,distributed resource,frequency regulation,high renewable energy penetrated power system.展开更多
To reduce the difficulty and enhance the enthusiasm of private-owned electric vehicles(EVs) in participating in frequency regulation ancillary service market(FRASM), a decision aid model(DAM) is proposed. This paper p...To reduce the difficulty and enhance the enthusiasm of private-owned electric vehicles(EVs) in participating in frequency regulation ancillary service market(FRASM), a decision aid model(DAM) is proposed. This paper presents three options for EV participating in FRASM, i. e., the base mode(BM), unidirectional charging mode(UCM), and bidirectional charging/discharging mode(BCDM), based on a reasonable simplification of users' participating willingness. In BM, individual EVs will not be involved in FRASM, and DAM will assist users to set the optimal charging schemes based on travel plans under the time-of-use(TOU) price. UCM and BCDM are two modes in which EVs can take part in FRASM. DAM can assist EV users to create their quotation plan, which includes hourly upper and lower reserve capabilities and regulation market mileage prices. In UCM and BCDM, the difference is that only the charging rate can be adjusted in the UCM, and the EVs in BCDM can not only charge but also discharge if necessary. DAM can estimate the expected revenue of all three modes, and EV users can make the final decision based on their preferences. Simulation results indicate that all the three modes of DAM can reduce the cost, while BCDM can get the maximum expected revenue.展开更多
As the proportion of renewable energy(RE)increases,the inertia and the primary frequency regulation(FR)capability of the power system decrease.Thus,ensuring frequency security in the scheduling model has become a new ...As the proportion of renewable energy(RE)increases,the inertia and the primary frequency regulation(FR)capability of the power system decrease.Thus,ensuring frequency security in the scheduling model has become a new technical requirement in power systems with a high share of RE.Due to a shortage of conventional synchronous generators,the frequency support of multi-source converters has become an indispensable part of the system frequency resources,especially variable-speed wind turbine generation(WTG)and battery energy storage(BES).Quantitative expression of the FR capability of multi-source converters is necessary to construct frequency-constrained scheduling model.However,the frequency support performance of these converter-interfaced devices is related to their working states,operation modes,and parameters,and the complex coupling of these factors has not been fully exploited in existing models.In this study,we propose an integrated frequency-constrained scheduling model considering the coordination of FR capabilities from multi-source converters.Switchable FR control strategies and variable FR parameters for WTG with or without reserved power are modeled,and multi-target allocation of BES capacity between tracking dispatch instruction and emergency FR is analyzed.Then,the variable FR capabilities of WTG and BES are embedded into the integrated frequency-constrained scheduling model.The nonlinear constraints for frequency security are precisely linearized through an improved iteration-based strategy.The effectiveness of the proposed model is verified in a modified IEEE 24-bus standard system.The results suggest that the coordinated participation of BES and WTG in FR can effectively reduce the cost of the scheduling model while meeting frequency security constraints.展开更多
Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency....Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency.Thus,when the system encounters a sudden change in load or disturbance,the dynamic process of frequency regulation will be greatly influenced.In view of this issue,an improved VSG control strategy based on a coordinated self-adaptive(CSA)method is proposed.The time domain analysis method is used to study the influences of virtual inertia and damping parameter perturbation on the system steady and dynamic performances.Furthermore,in order to make the control strategy suitable for large load changes and suppress frequency variations beyond the limit,the secondary frequency modulation is introduced into the control loop.Through the coordinated adaptive control of virtual inertia,virtual damping and frequency modulation,the dynamic performance of vSG frequency regulation can be obviously improved.Simulation and experiment results have verified the effectiveness of the proposed CSA control strategy.展开更多
Renewable energy sources(RESs)are rapidly devel-oping and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems.The load damping factor D charact...Renewable energy sources(RESs)are rapidly devel-oping and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems.The load damping factor D characterizes the active power of load that changes with power system frequency,which is an important factor influencing the frequency response.However,the value of D is small,resulting in the limitation in frequency regulation of the power system.This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators(SVGs)in substations.Additionally,it discusses the configuration method for the relevant parameters of the controller,evaluates its frequen-cy regulation capability,investigates the impact of large-scale application of the controller on static and dynamic loads,and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid.The large-scale application of the proposed controller can significantly improve the frequency regulation capability,and almost have no influence on the working status of the load.It can also significantly improve the dynamic performance of system frequency.The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.展开更多
Hybrid multi-terminal direct current(MTDC)transmission technology has been a research focus,and primary frequency regulation(FR)improvement in the receiving-end system is one of the problems to be solved.This paper pr...Hybrid multi-terminal direct current(MTDC)transmission technology has been a research focus,and primary frequency regulation(FR)improvement in the receiving-end system is one of the problems to be solved.This paper presents a decentralized primary FR scheme for hybrid MTDC power systems considering multi-source enhancement to help suppress frequency disturbance in the receiving-end systems.All the converters only need local frequency or DC voltage signal input to respond to system disturbance without communication or a control center,i.e.,a decentralized control scheme.The proposed scheme can activate appropriate power sources to assist in FR in various system disturbance severities with fine-designed thresholds,ensuring sufficient utilization of each power source.To better balance FR performance and FR resource participation,an evaluation index is proposed and the parameter optimization problem is further conducted.Finally,the validity of the proposed scheme is verified by simulations in MATLAB/Simulink.展开更多
An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse o...An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.展开更多
With various components and complex topologies,the applications of high-voltage direct current(HVDC)links bring new challenges to the interconnected power systems in the aspect of frequency security,which further infl...With various components and complex topologies,the applications of high-voltage direct current(HVDC)links bring new challenges to the interconnected power systems in the aspect of frequency security,which further influence their reliability performances.Consequently,this paper presents an approach to evaluate the impacts of the HVDC link outage on the reliability of interconnected power system considering the frequency regulation process during system contingencies.Firstly,a multi-state model of an HVDC link with different available loading rates(ALRs)is established based on its reliability network.Then,dynamic frequency response models of the interconnected power system are presented and integrated with a novel frequency regulation scheme enabled by the HVDC link.The proposed scheme exploits the temporary overload capability of normal converters to compensate for the imbalanced power during system contingencies.Moreover,it offers frequency support that enables the frequency regulation reserves of the sending-end and receiving-end power systems to be mutually available.Several indices are established to measure the system reliability based on the given models in terms of abnormal frequency duration,frequency deviation,and energy losses of the frequency regulation process during system contingencies.Finally,a modified two-area reliability test system(RTS)with an HVDC link is adopted to verify the proposed approach.展开更多
Wind power(WP)is considered as one of the main renewable energy sources(RESs)for future low-carbon and high-cost-efficient power system.However,its low inertia characteristic may threaten the system frequ-ency stabili...Wind power(WP)is considered as one of the main renewable energy sources(RESs)for future low-carbon and high-cost-efficient power system.However,its low inertia characteristic may threaten the system frequ-ency stability of the power system with a high penetration of WP generation.Thus,the capability of WP participating in the system frequency regulation has become a research hotspot.In this paper,the impact of WP on power system frequency stability is initially presented.In addition,various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine(WT)level to the wind farm(WF)level,and their perfor-mances are compared in terms of operating principles and practical applications.The pros and cons of each control strategy are also discussed.Moreover,the WP combing with energy storage system(ESS)for system frequency regulation is explored.Furthermore,the prospects,future challenges,and solutions of WP participating in power system frequency regulation are summarized.展开更多
Continuous increase of wind power penetration brings high randomness to power system,and also leads to serious shortage of primary frequency regulation(PFR)reserve for power system whose reserve capacity is typically ...Continuous increase of wind power penetration brings high randomness to power system,and also leads to serious shortage of primary frequency regulation(PFR)reserve for power system whose reserve capacity is typically provided by conventional units.Considering large-scale wind power participating in PFR,this paper proposes a unit commitment optimization model with respect to coordination of steady state and transient state.In addition to traditional operation costs,losses of wind farm de-loaded operation,environmental benefits and transient frequency safety costs in high-risk stochastic scenarios are also considered in the model.Besides,the model makes full use of interruptible loads on demand side as one of the PFR reserve sources.A selection method for high-risk scenarios is also proposed to improve the calculation efficiency.Finally,this paper proposes an inner-outer iterative optimization method for the model solution.The method is validated by the New England 10-machine system,and the results show that the optimization model can guarantee both the safety of transient frequency and the economy of system operation.展开更多
As the penetration of renewable energy continues to increase,stochastic and intermittent generation resources gradually replace the conventional generators,bringing significant challenges in stabilizing power system f...As the penetration of renewable energy continues to increase,stochastic and intermittent generation resources gradually replace the conventional generators,bringing significant challenges in stabilizing power system frequency.Thus,aggregating demand-side resources for frequency regulation attracts attentions from both academia and industry.However,in practice,conventional aggregation approaches suffer from random and uncertain behaviors of the users such as opting out control signals.The risk-averse multi-armed bandit learning approach is adopted to learn the behaviors of the users and a novel aggregation strategy is developed for residential heating,ventilation,and air conditioning(HVAC)to provide reliable secondary frequency regulation.Compared with the conventional approach,the simulation results show that the risk-averse multiarmed bandit learning approach performs better in secondary frequency regulation with fewer users being selected and opting out of the control.Besides,the proposed approach is more robust to random and changing behaviors of the users.展开更多
Battery energy storage systems(BESSs)can provide instantaneous support for frequency regulation(FR)because of their fast response characteristics.However,purely pursuing a better FR effect calls for continually rapid ...Battery energy storage systems(BESSs)can provide instantaneous support for frequency regulation(FR)because of their fast response characteristics.However,purely pursuing a better FR effect calls for continually rapid cycles of BESSs,which shortens their lifetime and deteriorates the operational economy.To coordinate the lifespan savings and the FR effect,this paper presents a control strategy for the FR of BESSs based on fuzzy logic and hierarchical controllers.The fuzzy logic controller improves the effect of FR by adjusting the charging/discharging power of the BESS with a higher response speed and precision based on the area control error(ACE)signal and the change rate of ACE in a non-linear way.Hierarchical controllers effectively reduce the life loss by optimizing the depth of discharge,which ensures that the state of charge(SOC)of BESS is always in the optimal operating range,and the total FR cost is the lowest at this time.The proposed method can achieve the optimal balance between ACE reduction and operational economy of BESS.The effectiveness of the proposed strategy is verified in a two-area power system.展开更多
With the extensive integration of high-penetration renewable energy resources,more fast-response frequency regulation(FR)providers are required to eliminate the impact of uncertainties from loads and distributed gener...With the extensive integration of high-penetration renewable energy resources,more fast-response frequency regulation(FR)providers are required to eliminate the impact of uncertainties from loads and distributed generators(DGs)on system security and stability.As a high-quality FR resource,community integrated energy station(CIES)can effectively respond to frequency deviation caused by renewable energy generation,helping to solve the frequency problem of power system.This paper proposes an optimal planning model of CIES considering FR service.First,the model of FR service is established to unify the time scale of FR service and economic operation.Then,an optimal planning model of CIES considering FR service is proposed,with which the revenue of participating in the FR service is obtained under market mechanism.The flexible electricity pricing model is introduced to flatten the peak tieline power of CIES.Case studies are conducted to analyze the annual cost and the revenue of CIES participating in FR service,which suggest that providing ancillary services can bring potential revenue.展开更多
The rapid increase in renewable energy integration brings with it a series of uncertainty to the transmission and distribution systems.In general,large-scale wind and solar power integration always cause short-term mi...The rapid increase in renewable energy integration brings with it a series of uncertainty to the transmission and distribution systems.In general,large-scale wind and solar power integration always cause short-term mismatch between generation and load demand because of their intermittent nature.The traditional way of dealing with this problem is to increase the spinning reserve,which is quite costly.In recent years,it has been proposed that part of the load can be controlled dynamically for frequency regulation with little impact on customers’living comfort.This paper proposes a hybrid dynamic demand control(DDC)strategy for the primary and secondary frequency regulation.In particular,the loads can not only arrest the sudden frequency drop,but also bring the frequency closer to the nominal value.With the proposed control strategy,the demand side can provide a fast and smooth frequency regulation service,thereby replacing some generation reserve to achieve a lower expense.展开更多
Islanded microgrids must be self-sufficient in terms of frequency and voltage control due to their islanded operation.A control strategy for frequency regulation by combining the operation of a wind generator,a diesel...Islanded microgrids must be self-sufficient in terms of frequency and voltage control due to their islanded operation.A control strategy for frequency regulation by combining the operation of a wind generator,a diesel generator,a battery energy storage system and a dump load in a microgrid is proposed in this paper.In the proposed strategy,the control task is partitioned into two subtasks:1)choosing the appropriate element to be used for regulation,and 2)providing frequency regulation.A global controller chooses the element to operate.Then,the frequency regulation is provided by separate individual controllers.The proposed control strategy is tested on a microgrid with mixed types of generation and modeled on Simulink.By monitoring the power of individual elements and system frequency,it is shown that the proposed control strategy operates efficiently.The proposed strategy facilitates the integration of renewable energy sources and enhances frequency regulation.展开更多
The air conditioning cluster(ACC)is a potential candidate to provide frequency regulation reserves.However,the effective assessment of the ACC willing reserve capacity is often an obstacle for existing demand response...The air conditioning cluster(ACC)is a potential candidate to provide frequency regulation reserves.However,the effective assessment of the ACC willing reserve capacity is often an obstacle for existing demand response(DR)programs,influenced by incentive prices,temperatures,etc.In this paper,the complex relationship between the ACC willing reserve capacity and its key influence factors is defined as a demand response characteristic(DRC).To learn about DRC along with real-time frequency regulation,an online deep learning-based DRC(ODLDRC)modeling methodology is designed to continuously retrain the deep neural network-based model.The ODL-DRC model trained by incoming new data does not require massive historical training data,which makes it more time-efficient.Then,the coordinate operation between ODL-DRC modeling and optimal frequency regulation(OFR)is presented.A robust decentralized sliding mode controller(DSMC)is designed to manage the ACC response power in primary frequency regulation against any ACC response uncertainty.An ODL-DRC model-based OFR scheme is formulated by taking the learning error into consideration.Thereby,the ODL-DRC model can be applied to minimize the total operational cost while maintaining frequency stability,without waiting for a well-trained model.The simulation cases validate the superiority of the OFR based on characterizing the ACC by online learning,which can capture the real DRC and simultaneously optimize the regulation performance with strong robustness against any ACC response uncertainty and learning error.展开更多
The cost of Energy Storage System(ESS)for frequency regulation is difficult to calculate due to battery’s degradation when an ESS is in grid-connected operation.To solve this problem,the influence mechanism of actual...The cost of Energy Storage System(ESS)for frequency regulation is difficult to calculate due to battery’s degradation when an ESS is in grid-connected operation.To solve this problem,the influence mechanism of actual operating conditions on the life degradation of Li-ion battery energy storage is analyzed.A control strategy of Li-ion ESS participating in grid frequency regulation is constructed and a cost accounting model for frequency regulation considering the effect of battery life degradation is established.The estimated operating life and annual average cost of the Li-ion ESS under different dead bands and SOC set-points are calculated.The case studies show that the estimated operating life of the Li-ion ESS under the actual operating condition differs significantly from the nominal life provided by the manufacturer under the standard condition and the full discharge mode.This paper provides an accurate costing method for the ESS participating in grid frequency regulation to help the promotion of the ESS to participate in the ancillary service market.展开更多
As a dispatchable renewable energy technology, the fast ramping capability of concentrating solar power (CSP) can be exploited to provide regulation services. However, frequent adjustments in real-time power output of...As a dispatchable renewable energy technology, the fast ramping capability of concentrating solar power (CSP) can be exploited to provide regulation services. However, frequent adjustments in real-time power output of CSP, which stems out of strategies offered by ill-designed market, may affect the durability and the profitability of the CSP plant, especially when it provides fast regulation services in a real-time operation. We propose the coordinated operation of a CSP plant and wind farm by exploiting their complementarity in accuracy and durability for providing frequency regulation. The coordinated operation can respond to regulation signals effectively and achieve a better performance than conventional thermal generators. We further propose an optimal bidding strategy for both energy and frequency regulations for the coordinated operation of CSP plant and wind farm in day-ahead market (DAM). The validity of the coordinated operation model and the proposed bidding strategy is verified by a case study including a base case and sensitivity analyses on several impacting factors in electricity markets.展开更多
基金supported by the Jilin Province Science and Technology Development Plan Project(No.20220203163SF).
文摘Photovoltaic(PV)and battery energy storage systems(BESSs)are key components in the energy market and crucial contributors to carbon emission reduction targets.These systems can not only provide energy but can also generate considerable revenue by providing frequency regulation services and participating in carbon trading.This study proposes a bidding strategy for PV and BESSs operating in joint energy and frequency regulation markets,with a specific focus on carbon reduction benefits.A two-stage bidding framework that optimizes the profit of PV and BESSs is presented.In the first stage,the day-ahead energy market takes into account potential real-time forecast deviations.In the second stage,the real-time balancing market uses a rolling optimization method to account for multiple uncertainties.Notably,a real-time frequency regulation control method is proposed for the participation of PV and BESSs in automatic generation control(AGC).This is particularly relevant given the uncertainty of grid frequency fluctuations in the optimization model of the real-time balancing market.This control method dynamically assigns the frequency regulation amount undertaken by the PV and BESSs according to the control interval in which the area control error(ACE)occurs.The case study results demonstrate that the proposed bidding strategy not only enables the PV and BESSs to effectively participate in the grid frequency regulation response but also yields considerable carbon emission reduction benefits and effectively improves the system operation economy.
基金supported by the National Key R&D Program of China(No.2022YFB2402700).
文摘Frequency regulation of voltage source converter-based multi-terminal high-voltage direct current(VSC-MTDC)system with offshore wind farms enhances the frequency stability by compensating the power for a disturbed AC system.However,it is difficult to reasonably allocate frequency-regulation resources due to a lack of coordination mechanisms between wind farms and the MTDC system.Moreover,it is difficult for the frequency control of the wind farms to manage changes in wind speed;and the risk of wind-turbine stalls is high.Thus,based on the kinetic energy of wind turbines and the power margin of the converters,the frequency-regulation capability of wind turbines is evaluated,and a dynamic frequency-support scheme considering the real-time frequency-support capability of the wind turbines and system frequency evolution is proposed to improve the frequency-support performance.A power adaptation technique at variable wind speeds is developed;the active power in the frequency-support stage and restoration stage is switched according to the wind speed.A hierarchical zoning frequency-regulation scheme is designed to use the frequency-regulation resources of different links in the MTDC system with wind farms.The simulation results show that the novel frequency-regulation strategy maintains frequency stability with wind-speed changes and avoids multiple frequency dips.
基金supported in part by the National Key R&D Program of China(No.2021YFB2401200)the National Natural Science Foundation of China Enterprise Innovation and Development Joint Fund(No.U21B2002).
文摘The high renewable penetrated power system has severe frequency regulation problems.Distributed resources can provide frequency regulation services but are limited by com-munication time delay.This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service.Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation.We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance.Besides,we study communication resources allocation solution in high renewable energy penetrated power systems.We provide a case study based on the HRP-38 system.Results show communication time delay decreases distributed resources'ability to provide frequency regulation service.On the other hand,allocating more communication resources to distributed resources'communica-tion services improves their frequency regulation performance.For power systems with renewable energy penetration above 70%,required communications resources are about five times as many as 30%renewable energy penetrated power systems to keep frequency performance the same.Index Terms-Communication resources allocation,commun-ication time delay,distributed resource,frequency regulation,high renewable energy penetrated power system.
基金supported in part by the National Natural Science Foundation of China(No.51777065).
文摘To reduce the difficulty and enhance the enthusiasm of private-owned electric vehicles(EVs) in participating in frequency regulation ancillary service market(FRASM), a decision aid model(DAM) is proposed. This paper presents three options for EV participating in FRASM, i. e., the base mode(BM), unidirectional charging mode(UCM), and bidirectional charging/discharging mode(BCDM), based on a reasonable simplification of users' participating willingness. In BM, individual EVs will not be involved in FRASM, and DAM will assist users to set the optimal charging schemes based on travel plans under the time-of-use(TOU) price. UCM and BCDM are two modes in which EVs can take part in FRASM. DAM can assist EV users to create their quotation plan, which includes hourly upper and lower reserve capabilities and regulation market mileage prices. In UCM and BCDM, the difference is that only the charging rate can be adjusted in the UCM, and the EVs in BCDM can not only charge but also discharge if necessary. DAM can estimate the expected revenue of all three modes, and EV users can make the final decision based on their preferences. Simulation results indicate that all the three modes of DAM can reduce the cost, while BCDM can get the maximum expected revenue.
基金supported by the National Key Research and Development Program of China(No.2021YFB2400500)the Science and Technology Project of State Grid Corporation of China“Fast control of photovoltaic and wind power plant for transient frequency/voltage support”.
文摘As the proportion of renewable energy(RE)increases,the inertia and the primary frequency regulation(FR)capability of the power system decrease.Thus,ensuring frequency security in the scheduling model has become a new technical requirement in power systems with a high share of RE.Due to a shortage of conventional synchronous generators,the frequency support of multi-source converters has become an indispensable part of the system frequency resources,especially variable-speed wind turbine generation(WTG)and battery energy storage(BES).Quantitative expression of the FR capability of multi-source converters is necessary to construct frequency-constrained scheduling model.However,the frequency support performance of these converter-interfaced devices is related to their working states,operation modes,and parameters,and the complex coupling of these factors has not been fully exploited in existing models.In this study,we propose an integrated frequency-constrained scheduling model considering the coordination of FR capabilities from multi-source converters.Switchable FR control strategies and variable FR parameters for WTG with or without reserved power are modeled,and multi-target allocation of BES capacity between tracking dispatch instruction and emergency FR is analyzed.Then,the variable FR capabilities of WTG and BES are embedded into the integrated frequency-constrained scheduling model.The nonlinear constraints for frequency security are precisely linearized through an improved iteration-based strategy.The effectiveness of the proposed model is verified in a modified IEEE 24-bus standard system.The results suggest that the coordinated participation of BES and WTG in FR can effectively reduce the cost of the scheduling model while meeting frequency security constraints.
基金supported by National Natural Science Foundation of China(No.51577124,No.51877148)National Key Research and Development Program of China(SQ2023YFE0198100)。
文摘Power inverter adopting virtual synchronous generator(VSG)control can provide inertia support for distributed generation systems.However,it cannot take into account the dynamic regulation characteristics of frequency.Thus,when the system encounters a sudden change in load or disturbance,the dynamic process of frequency regulation will be greatly influenced.In view of this issue,an improved VSG control strategy based on a coordinated self-adaptive(CSA)method is proposed.The time domain analysis method is used to study the influences of virtual inertia and damping parameter perturbation on the system steady and dynamic performances.Furthermore,in order to make the control strategy suitable for large load changes and suppress frequency variations beyond the limit,the secondary frequency modulation is introduced into the control loop.Through the coordinated adaptive control of virtual inertia,virtual damping and frequency modulation,the dynamic performance of vSG frequency regulation can be obviously improved.Simulation and experiment results have verified the effectiveness of the proposed CSA control strategy.
基金funded by the State Grid Corporation of China(No.SGJSSZ00KJS2310831)"Research and application of key technologies for load flexibility resource mining and power grid regulation driven by industrial Internet".
文摘Renewable energy sources(RESs)are rapidly devel-oping and their substitution for traditional power generation poses significant challenges to the frequency regulation in power systems.The load damping factor D characterizes the active power of load that changes with power system frequency,which is an important factor influencing the frequency response.However,the value of D is small,resulting in the limitation in frequency regulation of the power system.This paper proposes a parallel-type load damping factor controller to enhance load damping factor by utilizing static var generators(SVGs)in substations.Additionally,it discusses the configuration method for the relevant parameters of the controller,evaluates its frequen-cy regulation capability,investigates the impact of large-scale application of the controller on static and dynamic loads,and conducts a comprehensive evaluation of the impact of the damping factor control process on the voltage stability of the main grid.The large-scale application of the proposed controller can significantly improve the frequency regulation capability,and almost have no influence on the working status of the load.It can also significantly improve the dynamic performance of system frequency.The proposed controller can provide technical support for the frequency regulation of new power systems with high proportion of RESs.
基金supported by the National Natural Science Foundation of China(No.52077196)the Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.(No.5211JY21N001)。
文摘Hybrid multi-terminal direct current(MTDC)transmission technology has been a research focus,and primary frequency regulation(FR)improvement in the receiving-end system is one of the problems to be solved.This paper presents a decentralized primary FR scheme for hybrid MTDC power systems considering multi-source enhancement to help suppress frequency disturbance in the receiving-end systems.All the converters only need local frequency or DC voltage signal input to respond to system disturbance without communication or a control center,i.e.,a decentralized control scheme.The proposed scheme can activate appropriate power sources to assist in FR in various system disturbance severities with fine-designed thresholds,ensuring sufficient utilization of each power source.To better balance FR performance and FR resource participation,an evaluation index is proposed and the parameter optimization problem is further conducted.Finally,the validity of the proposed scheme is verified by simulations in MATLAB/Simulink.
基金National Natural Science Foundation of China(No.62303107)Fundamental Research Funds for the Central Universities,China(Nos.2232022G-09 and 2232021D-38)Shanghai Sailing Program,China(No.21YF1400100)。
文摘An alternating current(AC)microgrid is a system that integrates renewable power,power converters,controllers and loads.Hierarchical control can manage the frequency of the microgrid to prevent imbalance and collapse of the system.The existing frequency control methods use traditional proportion integration(PI)controllers,which cannot adjust PI parameters in real-time to respond to the status changes of the system.Hierarchical control driven by fuzzy logic allows real-time adjustment of the PI parameters and the method used a two-layer control structure.The primary control used droop control to adjust power distribution,and fuzzy logic was used in the voltage loop of the primary control.The secondary control was added to make up for frequency deviation caused by droop control,and fuzzy logic was used in the secondary frequency control to deal with the dynamic change of frequency caused by the disturbances of loads.The proposed method was simulated in Matlab/Simulink.In the primary control,the proposed method reduced the total harmonic distortion(THD)of two cycles of the output voltage from 4.19%to 3.89%;in the secondary control,the proposed method reduced the frequency fluctuation of the system by about 0.03 Hz and 0.04 Hz when the load was increased and decreased,respectively.The results show that the proposed methods have a better effect on frequency maintenance and voltage control of the AC microgrid.
基金supported by the National Science Foundation of China (No.51807173)the Foundation Research Funds for Central Universities (No.2021QNA4012)the Project of State Grid Zhejiang Electric Power Co.,Ltd. (No.2021ZK11)。
文摘With various components and complex topologies,the applications of high-voltage direct current(HVDC)links bring new challenges to the interconnected power systems in the aspect of frequency security,which further influence their reliability performances.Consequently,this paper presents an approach to evaluate the impacts of the HVDC link outage on the reliability of interconnected power system considering the frequency regulation process during system contingencies.Firstly,a multi-state model of an HVDC link with different available loading rates(ALRs)is established based on its reliability network.Then,dynamic frequency response models of the interconnected power system are presented and integrated with a novel frequency regulation scheme enabled by the HVDC link.The proposed scheme exploits the temporary overload capability of normal converters to compensate for the imbalanced power during system contingencies.Moreover,it offers frequency support that enables the frequency regulation reserves of the sending-end and receiving-end power systems to be mutually available.Several indices are established to measure the system reliability based on the given models in terms of abnormal frequency duration,frequency deviation,and energy losses of the frequency regulation process during system contingencies.Finally,a modified two-area reliability test system(RTS)with an HVDC link is adopted to verify the proposed approach.
基金supported by the State Grid Corporation Headquarters Science and Technology Project(Grant No.5100-202199273A-0-0-00).
文摘Wind power(WP)is considered as one of the main renewable energy sources(RESs)for future low-carbon and high-cost-efficient power system.However,its low inertia characteristic may threaten the system frequ-ency stability of the power system with a high penetration of WP generation.Thus,the capability of WP participating in the system frequency regulation has become a research hotspot.In this paper,the impact of WP on power system frequency stability is initially presented.In addition,various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine(WT)level to the wind farm(WF)level,and their perfor-mances are compared in terms of operating principles and practical applications.The pros and cons of each control strategy are also discussed.Moreover,the WP combing with energy storage system(ESS)for system frequency regulation is explored.Furthermore,the prospects,future challenges,and solutions of WP participating in power system frequency regulation are summarized.
基金supported by the Six Talent Peaks Project in Jiangsu Province(No.XNY-020)the State Key Laboratory of Smart Grid Protection and Control
文摘Continuous increase of wind power penetration brings high randomness to power system,and also leads to serious shortage of primary frequency regulation(PFR)reserve for power system whose reserve capacity is typically provided by conventional units.Considering large-scale wind power participating in PFR,this paper proposes a unit commitment optimization model with respect to coordination of steady state and transient state.In addition to traditional operation costs,losses of wind farm de-loaded operation,environmental benefits and transient frequency safety costs in high-risk stochastic scenarios are also considered in the model.Besides,the model makes full use of interruptible loads on demand side as one of the PFR reserve sources.A selection method for high-risk scenarios is also proposed to improve the calculation efficiency.Finally,this paper proposes an inner-outer iterative optimization method for the model solution.The method is validated by the New England 10-machine system,and the results show that the optimization model can guarantee both the safety of transient frequency and the economy of system operation.
基金supported by the National Natural Science Foundation of China(No.51907026)Natural Science Foundation of Jiangsu(No.BK20190361)+1 种基金Jiangsu Provincial Key Laboratory of Smart Grid Technology and EquipmentGlobal Energy Interconnection Research Institute(No.SGGR0000WLJS1900107)
文摘As the penetration of renewable energy continues to increase,stochastic and intermittent generation resources gradually replace the conventional generators,bringing significant challenges in stabilizing power system frequency.Thus,aggregating demand-side resources for frequency regulation attracts attentions from both academia and industry.However,in practice,conventional aggregation approaches suffer from random and uncertain behaviors of the users such as opting out control signals.The risk-averse multi-armed bandit learning approach is adopted to learn the behaviors of the users and a novel aggregation strategy is developed for residential heating,ventilation,and air conditioning(HVAC)to provide reliable secondary frequency regulation.Compared with the conventional approach,the simulation results show that the risk-averse multiarmed bandit learning approach performs better in secondary frequency regulation with fewer users being selected and opting out of the control.Besides,the proposed approach is more robust to random and changing behaviors of the users.
基金This work was supported by Open Research Project of State Key Laboratory of Control and Simulation of Power Systems and Generation Equipments,Tsinghua University(No.SKLD20M20)Xinjiang Uygur Autonomous Region Natural Science Key Project of University Research Program(No.XJEDU2020I004).
文摘Battery energy storage systems(BESSs)can provide instantaneous support for frequency regulation(FR)because of their fast response characteristics.However,purely pursuing a better FR effect calls for continually rapid cycles of BESSs,which shortens their lifetime and deteriorates the operational economy.To coordinate the lifespan savings and the FR effect,this paper presents a control strategy for the FR of BESSs based on fuzzy logic and hierarchical controllers.The fuzzy logic controller improves the effect of FR by adjusting the charging/discharging power of the BESS with a higher response speed and precision based on the area control error(ACE)signal and the change rate of ACE in a non-linear way.Hierarchical controllers effectively reduce the life loss by optimizing the depth of discharge,which ensures that the state of charge(SOC)of BESS is always in the optimal operating range,and the total FR cost is the lowest at this time.The proposed method can achieve the optimal balance between ACE reduction and operational economy of BESS.The effectiveness of the proposed strategy is verified in a two-area power system.
基金supported by the National Key R&D Program of China(No.2018YFB0905000)National Natural Science Foundation of China(No.51961135101)。
文摘With the extensive integration of high-penetration renewable energy resources,more fast-response frequency regulation(FR)providers are required to eliminate the impact of uncertainties from loads and distributed generators(DGs)on system security and stability.As a high-quality FR resource,community integrated energy station(CIES)can effectively respond to frequency deviation caused by renewable energy generation,helping to solve the frequency problem of power system.This paper proposes an optimal planning model of CIES considering FR service.First,the model of FR service is established to unify the time scale of FR service and economic operation.Then,an optimal planning model of CIES considering FR service is proposed,with which the revenue of participating in the FR service is obtained under market mechanism.The flexible electricity pricing model is introduced to flatten the peak tieline power of CIES.Case studies are conducted to analyze the annual cost and the revenue of CIES participating in FR service,which suggest that providing ancillary services can bring potential revenue.
基金supported by the Engineering Research Center Program of the National Science Foundationthe Department of Energy of USA under NSF Award Number EEC-1041877the CURENT Industry Partnership Program.
文摘The rapid increase in renewable energy integration brings with it a series of uncertainty to the transmission and distribution systems.In general,large-scale wind and solar power integration always cause short-term mismatch between generation and load demand because of their intermittent nature.The traditional way of dealing with this problem is to increase the spinning reserve,which is quite costly.In recent years,it has been proposed that part of the load can be controlled dynamically for frequency regulation with little impact on customers’living comfort.This paper proposes a hybrid dynamic demand control(DDC)strategy for the primary and secondary frequency regulation.In particular,the loads can not only arrest the sudden frequency drop,but also bring the frequency closer to the nominal value.With the proposed control strategy,the demand side can provide a fast and smooth frequency regulation service,thereby replacing some generation reserve to achieve a lower expense.
文摘Islanded microgrids must be self-sufficient in terms of frequency and voltage control due to their islanded operation.A control strategy for frequency regulation by combining the operation of a wind generator,a diesel generator,a battery energy storage system and a dump load in a microgrid is proposed in this paper.In the proposed strategy,the control task is partitioned into two subtasks:1)choosing the appropriate element to be used for regulation,and 2)providing frequency regulation.A global controller chooses the element to operate.Then,the frequency regulation is provided by separate individual controllers.The proposed control strategy is tested on a microgrid with mixed types of generation and modeled on Simulink.By monitoring the power of individual elements and system frequency,it is shown that the proposed control strategy operates efficiently.The proposed strategy facilitates the integration of renewable energy sources and enhances frequency regulation.
基金This work was supported by State Grid Corporation of China Project Research on Coordinated Technology for Dynamic Demand Response in Frequency Control.
文摘The air conditioning cluster(ACC)is a potential candidate to provide frequency regulation reserves.However,the effective assessment of the ACC willing reserve capacity is often an obstacle for existing demand response(DR)programs,influenced by incentive prices,temperatures,etc.In this paper,the complex relationship between the ACC willing reserve capacity and its key influence factors is defined as a demand response characteristic(DRC).To learn about DRC along with real-time frequency regulation,an online deep learning-based DRC(ODLDRC)modeling methodology is designed to continuously retrain the deep neural network-based model.The ODL-DRC model trained by incoming new data does not require massive historical training data,which makes it more time-efficient.Then,the coordinate operation between ODL-DRC modeling and optimal frequency regulation(OFR)is presented.A robust decentralized sliding mode controller(DSMC)is designed to manage the ACC response power in primary frequency regulation against any ACC response uncertainty.An ODL-DRC model-based OFR scheme is formulated by taking the learning error into consideration.Thereby,the ODL-DRC model can be applied to minimize the total operational cost while maintaining frequency stability,without waiting for a well-trained model.The simulation cases validate the superiority of the OFR based on characterizing the ACC by online learning,which can capture the real DRC and simultaneously optimize the regulation performance with strong robustness against any ACC response uncertainty and learning error.
基金This work is supported in part by Industrial Innovation of Jilin Province Development and Reform Commission(2017C017-2)Science&Technology Project of SGCC(Key technology and application of super large capac-ity battery energy storage system),and Jilin Provincial“13th Five-Year Plan”Science and Technology Project([2016]88).
文摘The cost of Energy Storage System(ESS)for frequency regulation is difficult to calculate due to battery’s degradation when an ESS is in grid-connected operation.To solve this problem,the influence mechanism of actual operating conditions on the life degradation of Li-ion battery energy storage is analyzed.A control strategy of Li-ion ESS participating in grid frequency regulation is constructed and a cost accounting model for frequency regulation considering the effect of battery life degradation is established.The estimated operating life and annual average cost of the Li-ion ESS under different dead bands and SOC set-points are calculated.The case studies show that the estimated operating life of the Li-ion ESS under the actual operating condition differs significantly from the nominal life provided by the manufacturer under the standard condition and the full discharge mode.This paper provides an accurate costing method for the ESS participating in grid frequency regulation to help the promotion of the ESS to participate in the ancillary service market.
基金This work was supported by the National Key Research and Development Program of China (No. 2017YFB0902200)Key Technology Project of State Grid Corporation of China (No. 5228001700CW)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (No. LAPS20002).
文摘As a dispatchable renewable energy technology, the fast ramping capability of concentrating solar power (CSP) can be exploited to provide regulation services. However, frequent adjustments in real-time power output of CSP, which stems out of strategies offered by ill-designed market, may affect the durability and the profitability of the CSP plant, especially when it provides fast regulation services in a real-time operation. We propose the coordinated operation of a CSP plant and wind farm by exploiting their complementarity in accuracy and durability for providing frequency regulation. The coordinated operation can respond to regulation signals effectively and achieve a better performance than conventional thermal generators. We further propose an optimal bidding strategy for both energy and frequency regulations for the coordinated operation of CSP plant and wind farm in day-ahead market (DAM). The validity of the coordinated operation model and the proposed bidding strategy is verified by a case study including a base case and sensitivity analyses on several impacting factors in electricity markets.