Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking ...Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。展开更多
A model was established based on Maxwell's equations and Navier-Stokes' equations to numerically simulate the electromagnetic field and flow field in a rectangular mold with sectional aspect ratio of 5:1. The ...A model was established based on Maxwell's equations and Navier-Stokes' equations to numerically simulate the electromagnetic field and flow field in a rectangular mold with sectional aspect ratio of 5:1. The FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed for the model to execute the modeling, meshing, load applying and solving. The Ti-Al alloy melt was selected to illustrate and validate the effects of the harmonic field frequency on the distribution of the physical fields in the mold. The simulated results demonstrate that with an increasing frequency the electric current forms an ellipsoid cavity where it becomes much weaker, and that the melt flows more intensely with low frequency (less than 5 kHz) than with high frequency (more than 5 kHz). The melt is pinched from the central part in the mold to bipolar parts in which it forms two vortexes in each side. The maximum value of fluid velocity exists near the bipolar zone.展开更多
The paper adopts finite element method to analyze the forward problem of low-frequency current fields in inhomogeneous media. Firstly, the direct solution of 2-D and 3-D scalar potential is given. Secondly, the techni...The paper adopts finite element method to analyze the forward problem of low-frequency current fields in inhomogeneous media. Firstly, the direct solution of 2-D and 3-D scalar potential is given. Secondly, the technique of covering finite elements for problems with movement has been presented; namely, when the place of testing point moved, the meshing data will be produced automatically to avoid re-meshing and distortion of the mesh. Thirdly the free and prescribed potential method is used to make the finite element coefficient matrices. Then this paper provides the result of a validity test obtained by simulating the laterolog-3 logging, compared with the numerical model-matching method. Finally, the MLL response is calculated.展开更多
To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based ...To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.展开更多
This paper focuses on the finite element method in the complex frequency domain(CFD-FEM)for the transient electric field.First,the initial value and boundary value problem of the transient electric field under the ele...This paper focuses on the finite element method in the complex frequency domain(CFD-FEM)for the transient electric field.First,the initial value and boundary value problem of the transient electric field under the electroquasistatic field in the complex frequency domain is given.In addition,the finite element equation and the constrained electric field equation on the boundary are derived.Secondly,the indirect algorithm of the numerical inverse Laplace transform is introduced.Based on it,the calculation procedures of the CFD-FEM are illustrated in detail.Thirdly,the step response,zero-state response under the positive periodic square waveform(PPSW)voltage,and the zero-input response by the CFD-FEM with direct algorithm and indirect algorithm are compared.Finally,the reason for the numerical oscillations of the zero-state response under the PPSW voltage is analyzed,and the method to reduce oscillations is proposed.The results show that the numerical accuracy of the indirect algorithm of the CFD-FEM is more than an order of magnitude higher than that of the direct algorithm when calculating the step response of the transient electric field.The proposed method can significantly reduce the numerical oscillations of the zero-state response under the PPSW voltage.The proposed method is helpful for the calculation of the transient electric field,especially in the case of frequency-dependent parameters.展开更多
The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the...The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band.展开更多
In order to add earthquake monitoring methods and develop new method research,the ELF Network for Earthquake Monitoring selected 30 stations in the Capital Circle and the Sichuan-Yunnan region. Finding electromagnetic...In order to add earthquake monitoring methods and develop new method research,the ELF Network for Earthquake Monitoring selected 30 stations in the Capital Circle and the Sichuan-Yunnan region. Finding electromagnetic field background variation is the basis of distinguishing the seismic electromagnetic anomalies. This paper introduces the data acquisition and selection of the Shexian,Anqiu,Lijiang and Dali stations which have recorded for longer time with better data and are located on the similar latitude. Then we use the natural source electromagnetic field's auto-power spectrum to express the intensity of the electromagnetic field. By using power spectral data of many frequencies in the observation frequency band,after the data pre-processing and sliding average noising,the background variation of extremely low frequency stations and the range ability were acquired.Taking the Baoshan M5. 1 earthquake on October 30,2015 and Dali M5. 0 earthquake on May 18,2016 as examples,the authors analyzed the earthquake electromagnetic anomaly characteristic of ELF stations around the earthquakes.展开更多
The dynamic behavior of two-dimensional nanostructures is important to the future application of nano devices. The vibrational behaviors of single-layered hexagonal boron nitride(h-BN) are studied by molecular dynamic...The dynamic behavior of two-dimensional nanostructures is important to the future application of nano devices. The vibrational behaviors of single-layered hexagonal boron nitride(h-BN) are studied by molecular dynamics simulation and continuum plate model. The bending stiffness and Poisson’s ratios of h-BN along zigzag direction and armchair direction are calculated. H-BN is softer compared with graphene. The continuum plate model can predict the vibration of h-BN with four edge-clamped boundary conditions well. The electric fields in different directions have obvious influence on the vibration of h-BN. The natural frequency of h-BN changes linearly with the electric field intensity along the polarization direction. The natural frequency of h-BN decreases with the increase of electric field intensity along both positive and negative nonpolarization direction. While the natural frequency of h-BN increases with the increase of electric field intensity along both positive and negative transverse electric field.展开更多
1研究背景许多著名学者一致认为自然正交函数方法是预测、评估和检验大规模数据中短期和长期变化的最先进工具(Dawson,2016;Chao,2019;Neha et al,2021)。然而自然正交函数方法最先应用在大气、气候和气象预测上(马开玉等,1993),近年来...1研究背景许多著名学者一致认为自然正交函数方法是预测、评估和检验大规模数据中短期和长期变化的最先进工具(Dawson,2016;Chao,2019;Neha et al,2021)。然而自然正交函数方法最先应用在大气、气候和气象预测上(马开玉等,1993),近年来该方法逐渐应用在强震预测研究中。在中国,采用正交函数方法计算强震前的能量场(杨明芝,2004)、应变场(杨明芝,2017;罗国富,2023)和频次场(罗国富,2023),提取场的时间和空间异常信息,分析与强震的关系。在日本、印度以及欧美国家,采用经验正交函数方法计算强震前后的变形场(Chang,2011;Chao,2019;Neha et al,2021),分析强震的同震变形,给出三维变形的运动方向。展开更多
基金supported by National Defense Basic Scientific Research Program of China(Grant Nos.JCKY2020408B002,WDZC2022-12).
文摘Recent years,the polarization response of ferroelectrics has been entirely studied.However,it is found that the polarization may disappear gradually with the continually applied of electric field.In this paper,taking K0.48Na0.52NbO3(KNN)as an example,it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods.The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency,the maximum polarization disappeared at high frequencies,and the hysteresis loop became elliptical.In order to further study the abnormal changes of hysteresis loops of ferroelectrics under high electric field frequency,we analyzed the hysteresis loop and dielectric response of solid solution 0.1SrTiO_(3)-0.9K_(0.48)Na_(0.52)NbO_(3).It was found that the doped hysteresis loop maintained its shape at higher frequency and the dielectric constant increased.This kind of doping has a higher field frequency adaptability,which has a key guiding role in improving the dielectric properties of ferroelectric thin films and expanding the frequency application range of ferroelectric nano memory。
基金supported by the Program for New Century Excellent Talents in Universities (GrantNo. NCET-08-0164) of China’s Ministry of Educationthe Foundation of National Key Laboratory for Precision Hot Processing of Metals, China
文摘A model was established based on Maxwell's equations and Navier-Stokes' equations to numerically simulate the electromagnetic field and flow field in a rectangular mold with sectional aspect ratio of 5:1. The FEM (Finite Element Method) and APDL (ANSYS Parametric Design Language) were employed for the model to execute the modeling, meshing, load applying and solving. The Ti-Al alloy melt was selected to illustrate and validate the effects of the harmonic field frequency on the distribution of the physical fields in the mold. The simulated results demonstrate that with an increasing frequency the electric current forms an ellipsoid cavity where it becomes much weaker, and that the melt flows more intensely with low frequency (less than 5 kHz) than with high frequency (more than 5 kHz). The melt is pinched from the central part in the mold to bipolar parts in which it forms two vortexes in each side. The maximum value of fluid velocity exists near the bipolar zone.
基金Supported by the National Natural Science Foundation of China
文摘The paper adopts finite element method to analyze the forward problem of low-frequency current fields in inhomogeneous media. Firstly, the direct solution of 2-D and 3-D scalar potential is given. Secondly, the technique of covering finite elements for problems with movement has been presented; namely, when the place of testing point moved, the meshing data will be produced automatically to avoid re-meshing and distortion of the mesh. Thirdly the free and prescribed potential method is used to make the finite element coefficient matrices. Then this paper provides the result of a validity test obtained by simulating the laterolog-3 logging, compared with the numerical model-matching method. Finally, the MLL response is calculated.
基金Project supported by National Basic Research Program of China(973 Program) (6131380301) National Natural Science Foundation of China (61001050).
文摘To describe the shielding ability of materials accurately and comprehensively,the frequency-domain and time-domain shielding effectiveness(SE) of material is investigated.The relevance between them was analyzed based on the minimum phase method,and the time-domain SE can be derived from frequency-domain SE.The SE of an energy selective surface(ESS) made of a novel material is investigated,and the relationship between SE and radiation field intensity are analyzed.The results show that not only material,but also the intensity of radiation electric field shows influence on SE in its frequency; for some materials,the dependence of SE on radiation electric field intensity needs to be considered.Therefore,it is necessary to research on the SE of shielding material in high-intensity electromagnetic environment.
基金supported by the National Natural Science Foundation of China(No.52077073).
文摘This paper focuses on the finite element method in the complex frequency domain(CFD-FEM)for the transient electric field.First,the initial value and boundary value problem of the transient electric field under the electroquasistatic field in the complex frequency domain is given.In addition,the finite element equation and the constrained electric field equation on the boundary are derived.Secondly,the indirect algorithm of the numerical inverse Laplace transform is introduced.Based on it,the calculation procedures of the CFD-FEM are illustrated in detail.Thirdly,the step response,zero-state response under the positive periodic square waveform(PPSW)voltage,and the zero-input response by the CFD-FEM with direct algorithm and indirect algorithm are compared.Finally,the reason for the numerical oscillations of the zero-state response under the PPSW voltage is analyzed,and the method to reduce oscillations is proposed.The results show that the numerical accuracy of the indirect algorithm of the CFD-FEM is more than an order of magnitude higher than that of the direct algorithm when calculating the step response of the transient electric field.The proposed method can significantly reduce the numerical oscillations of the zero-state response under the PPSW voltage.The proposed method is helpful for the calculation of the transient electric field,especially in the case of frequency-dependent parameters.
文摘The frequency selective surface (FSS) has been widely applied by means of its spatial frequency-filter characteristic, but it is always designed and used as a device with fixed frequency response. In order to tune the resonant frequency and switch the frequency channel, a scheme of mechanically tunable FSS is theoretically analyzed by using the method of Floquet's vector modes expansion and fields matching. A double-layer tunable FSS with dipole element can perform a dynamic range of resonant frequency covering whole X-band.
基金sponsored by the Youth Fund Project of CEA in 2017(QNJJ201702)
文摘In order to add earthquake monitoring methods and develop new method research,the ELF Network for Earthquake Monitoring selected 30 stations in the Capital Circle and the Sichuan-Yunnan region. Finding electromagnetic field background variation is the basis of distinguishing the seismic electromagnetic anomalies. This paper introduces the data acquisition and selection of the Shexian,Anqiu,Lijiang and Dali stations which have recorded for longer time with better data and are located on the similar latitude. Then we use the natural source electromagnetic field's auto-power spectrum to express the intensity of the electromagnetic field. By using power spectral data of many frequencies in the observation frequency band,after the data pre-processing and sliding average noising,the background variation of extremely low frequency stations and the range ability were acquired.Taking the Baoshan M5. 1 earthquake on October 30,2015 and Dali M5. 0 earthquake on May 18,2016 as examples,the authors analyzed the earthquake electromagnetic anomaly characteristic of ELF stations around the earthquakes.
基金supported in part by the National Natural Science Foundation of China under Grants 11522217 and 11632003in part by 333 Talents Program in Jiangsu Province+1 种基金in part by the Natural Science Foundation of Jiangsu Province under Grant BK20171411in part by the Fundamental Research Funds for the Central Universities of China
文摘The dynamic behavior of two-dimensional nanostructures is important to the future application of nano devices. The vibrational behaviors of single-layered hexagonal boron nitride(h-BN) are studied by molecular dynamics simulation and continuum plate model. The bending stiffness and Poisson’s ratios of h-BN along zigzag direction and armchair direction are calculated. H-BN is softer compared with graphene. The continuum plate model can predict the vibration of h-BN with four edge-clamped boundary conditions well. The electric fields in different directions have obvious influence on the vibration of h-BN. The natural frequency of h-BN changes linearly with the electric field intensity along the polarization direction. The natural frequency of h-BN decreases with the increase of electric field intensity along both positive and negative nonpolarization direction. While the natural frequency of h-BN increases with the increase of electric field intensity along both positive and negative transverse electric field.
文摘1研究背景许多著名学者一致认为自然正交函数方法是预测、评估和检验大规模数据中短期和长期变化的最先进工具(Dawson,2016;Chao,2019;Neha et al,2021)。然而自然正交函数方法最先应用在大气、气候和气象预测上(马开玉等,1993),近年来该方法逐渐应用在强震预测研究中。在中国,采用正交函数方法计算强震前的能量场(杨明芝,2004)、应变场(杨明芝,2017;罗国富,2023)和频次场(罗国富,2023),提取场的时间和空间异常信息,分析与强震的关系。在日本、印度以及欧美国家,采用经验正交函数方法计算强震前后的变形场(Chang,2011;Chao,2019;Neha et al,2021),分析强震的同震变形,给出三维变形的运动方向。