Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform...Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.展开更多
A band-pass frequency selective surface(FSS) with polarization rotation property is proposed. The proposed polarization rotating FSS(PR-FSS) is a two-dimensional periodic structure, its unit cell is an antenna-filter-...A band-pass frequency selective surface(FSS) with polarization rotation property is proposed. The proposed polarization rotating FSS(PR-FSS) is a two-dimensional periodic structure, its unit cell is an antenna-filter-antenna(AFA) module,and the polarization directions of the upper and lower antennas in each AFA module are orthogonal to each other, so the PR-FSS can achieve frequency selection and 90 degrees polarization rotation at the same time. The numerical simulation demonstrate that the anticipated frequency selection and polarization rotation are realized by the PR-FSS in the frequency band from 8.84 GHz to 10.30 GHz with a relative bandwidth of 15.26%, and the maximum insertion loss in the pass band is only 0.17 d B. Finally, one effective experiment validation is carried out, a reasonable agreement is observed between the experimental and simulated results except for a slight deviation caused by fabrication error and measurement tolerance.展开更多
Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these ante...Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.展开更多
Frequency selective surfaces (FSSs) have been successfully used in constructing microwave absorbers which demonstrate the ability of modifying and improving its absorbing performances. In this paper, microwave absorbe...Frequency selective surfaces (FSSs) have been successfully used in constructing microwave absorbers which demonstrate the ability of modifying and improving its absorbing performances. In this paper, microwave absorber based on ferromagnetic nano-films has been proposed and investigated with a structure similar to that of the Salisbury screen except that the resistive sheet is replaced by FSS of square patch array of the nano-film. We have explored the FSS absorber from three aspects: equivalent circuit model, electromagnetic full-wave simulation and the actual sample measurement. By carefully tuning the patch size, the thickness of the dielectric spacer and the specification of the ferromagnetic nano-film, we obtain the optimized performance of broadband microwave absorbing. Due to the light weight of the nano-films, the proposed absorbers can achieve an ultra-low surface density less than 0.25 kg/m2.展开更多
Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To so...Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.展开更多
An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loa...An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loaded receiving antenna array. The existing absorber is effectively simplified by withdrawing half of the loaded resistors; a more compact one is obtained when lumped capacitors are introduced. Building on this, a varactor-tunable absorber with a proper bias network is proposed. Numerical simulations of one tunable absorber with 1.6 mm in thickness show that a wide tuning range from 3.05 GHz to 1.96 GHz is achieved by changing the capacitance of the loaded varactor from 0.5 pF to 5.0 pF. An experiment is carried out using a rectangular waveguide measurement setup and excellent agreement between the simulated and measured results is demonstrated.展开更多
By applying meander-line for electrical loss and magnetic material for magnetic loss,we present a metamaterial absorber which is wide-spaced and dual-band(1.35—2.24 GHz and 10.37—12.37 GHz).The novelty of this study...By applying meander-line for electrical loss and magnetic material for magnetic loss,we present a metamaterial absorber which is wide-spaced and dual-band(1.35—2.24 GHz and 10.37—12.37 GHz).The novelty of this study mainly lies in a combination of two kinds of losses to consume electromagnetic energy,which can get better dual-band absorption.In the electrical loss layer,meander-line structures are printed on both surfaces of the substrate and the structure series with resistors.Considering the need for miniaturization,we connect eight metallic vias with these meander-line areas to form a compact 2.5-dimensional(2.5D)structure.The dimension of the unit cell is miniaturized to be 5.94 mm×5.94 mm,about 0.035λat the center frequency of the lower absorption band.In the magnetic loss layer,the 0.4 mm thick magnetic material is employed on a metallic ground plane.In addition,the complex permittivity and complex permeability of the magnetic material are given.Finally,we fabricate a prototype of the proposed absorber and obtain a measurement result which is in good agreement with the full-wave simulation result.展开更多
In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that...In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.展开更多
A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due...A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.展开更多
An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to wi...An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.展开更多
This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element i...This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.展开更多
Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the d...Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.展开更多
We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substr...We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.展开更多
In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in ...In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in millimeter wave band. Cross-slot units are designed on the iterative metallic meshes, which is composed of two same square metallic meshes with a misplaced overlap. In the infrared band of 3–5 μm, the ITFSS has an average transmittance of 80% with a Mg F2 substrate. In the millimeter wave band, a transmittance of-0.74 d B at the resonance frequency of 39.4 GHz is obtained. Moreover, theoretical simulations of the ITFSS diffractive characteristics and transmittance response are also investigated in detail. This ITFSS may be an efficient way to achieve the metamaterial millimeter wave/infrared functional film.展开更多
In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method...In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.展开更多
We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite, which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion...We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite, which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion loss less than 0.4 dB, and separation between adjacent channels more than 20 dB for either TE or TM incidence. Firstly, we briefly introduce the disadvantages of two types of FSS filter: waveguide-array FSS and printed FSS, which are commonly employed in the millimeter and sub-millimeter wave band. In order to meet the insertion loss requirement and specified spectral transmission response, we adopt a filter composed of two closely spaced freestanding metal plates, which con- tains an array of resonant ring slot elements. Computer simulation technology (CST) is used to optimize the structural dimensions of the resonant unit and interlayer separation. Numerical results show that these FSS filters exhibit trans- mission loss of less than 0.4 dB and separation between adjacent channels of more than 20 dB. Simulated transmission coefficients are in close agreement with the required specification, and even exceed the performance specifications.展开更多
Based on previous work, a novel Frequency Selective Surface (FSS) consisting of two metallic layers is proposed. The first layer is inductive-designed to generate the band-pass performance, while the second layer is c...Based on previous work, a novel Frequency Selective Surface (FSS) consisting of two metallic layers is proposed. The first layer is inductive-designed to generate the band-pass performance, while the second layer is capacitive-designed so that the miniaturization characteristic can be further improved. As a result, compared with the traditional single-layer structure, the profile of the FSS proposed is relatively small with the cell’s dimension only 0.0814λ × 0.0814λ. Moreover, the structure’s stability corresponding to waves of different polarizations and incident angles are also testified, which ensures the practicability of the proposed structure.展开更多
Based on the experimental results, in which the fabricated error of the double layer frequency selective surface (FSS) leads to the transmission loss and the resonant frequency leaves away the design resonant frequenc...Based on the experimental results, in which the fabricated error of the double layer frequency selective surface (FSS) leads to the transmission loss and the resonant frequency leaves away the design resonant frequency, the inter-layer separation distance (ISD) and the unit cell aligning error (UAE) were used as main variables to study the transmission performance attenuation of the double layer FSS configuration. The numerical analysis model for ISD and UAE was established and also was used to simulate the ring unit cell FSS transmission performance by the finite element and periodic moment methods. The double layer ring aperture FSS configuration designed was used as the numerical model. As a result of the numerical analysis, it is shown that both ISD and UAE produce insertion transmission loss (ITL) and insertion phase distortion (IPD) directly. Furthermore, ISD results in more loss of the amplitude of the transmitted signal for the FSS than UAE. It is significant for the designer of the multiplayer FSS to assign the fabricated error of the FSS dielectric layers. The UAE introduces the insertion phase variation badly.展开更多
基金supported by National Natural Science Foundation of China(No.52103361)Shaanxi University Youth Outstanding Talents Support Plan,Scientific and Technological Plan Project of Xi’an Beilin District(No.GX2143)。
文摘Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
基金supported by the National Natural Science Foundation of China (Grant No. 62072378)Xi’an Science and Technology Plan Project, China (Grant No. GXYD20.4)。
文摘A band-pass frequency selective surface(FSS) with polarization rotation property is proposed. The proposed polarization rotating FSS(PR-FSS) is a two-dimensional periodic structure, its unit cell is an antenna-filter-antenna(AFA) module,and the polarization directions of the upper and lower antennas in each AFA module are orthogonal to each other, so the PR-FSS can achieve frequency selection and 90 degrees polarization rotation at the same time. The numerical simulation demonstrate that the anticipated frequency selection and polarization rotation are realized by the PR-FSS in the frequency band from 8.84 GHz to 10.30 GHz with a relative bandwidth of 15.26%, and the maximum insertion loss in the pass band is only 0.17 d B. Finally, one effective experiment validation is carried out, a reasonable agreement is observed between the experimental and simulated results except for a slight deviation caused by fabrication error and measurement tolerance.
文摘Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.
文摘Frequency selective surfaces (FSSs) have been successfully used in constructing microwave absorbers which demonstrate the ability of modifying and improving its absorbing performances. In this paper, microwave absorber based on ferromagnetic nano-films has been proposed and investigated with a structure similar to that of the Salisbury screen except that the resistive sheet is replaced by FSS of square patch array of the nano-film. We have explored the FSS absorber from three aspects: equivalent circuit model, electromagnetic full-wave simulation and the actual sample measurement. By carefully tuning the patch size, the thickness of the dielectric spacer and the specification of the ferromagnetic nano-film, we obtain the optimized performance of broadband microwave absorbing. Due to the light weight of the nano-films, the proposed absorbers can achieve an ultra-low surface density less than 0.25 kg/m2.
基金supported by the National Natural Science Foundation of China(90305026).
文摘Traditional multi-band frequency selective surface (FSS) approaches are hard to achieve a perfect resonance response in a wide band due to the limit of the onset grating lobe frequency determined by the array. To solve this problem, an approach of combining elements in different period to build a hybrid array is presented. The results of series of numerical simulation show that multi-periodicity combined element FSS, which are designed using this approach, usually have much weaker grating lobes than the traditional FSS. Furthermore, their frequency response can be well predicted through the properties of their member element FSS. A prediction method for estimating the degree of expected grating lobe energy loss in designing multi-band FSS using this approach is provided.
基金Project supported by the National Natural Science Foundations of China (Grant Nos.61271250 and 61202490)
文摘An effective approach to designing a tunable electromagnetic absorber is presented and experimentally verified; it is based on an idea that an existing frequency selective surface (FSS) absorber is regarded as a loaded receiving antenna array. The existing absorber is effectively simplified by withdrawing half of the loaded resistors; a more compact one is obtained when lumped capacitors are introduced. Building on this, a varactor-tunable absorber with a proper bias network is proposed. Numerical simulations of one tunable absorber with 1.6 mm in thickness show that a wide tuning range from 3.05 GHz to 1.96 GHz is achieved by changing the capacitance of the loaded varactor from 0.5 pF to 5.0 pF. An experiment is carried out using a rectangular waveguide measurement setup and excellent agreement between the simulated and measured results is demonstrated.
文摘By applying meander-line for electrical loss and magnetic material for magnetic loss,we present a metamaterial absorber which is wide-spaced and dual-band(1.35—2.24 GHz and 10.37—12.37 GHz).The novelty of this study mainly lies in a combination of two kinds of losses to consume electromagnetic energy,which can get better dual-band absorption.In the electrical loss layer,meander-line structures are printed on both surfaces of the substrate and the structure series with resistors.Considering the need for miniaturization,we connect eight metallic vias with these meander-line areas to form a compact 2.5-dimensional(2.5D)structure.The dimension of the unit cell is miniaturized to be 5.94 mm×5.94 mm,about 0.035λat the center frequency of the lower absorption band.In the magnetic loss layer,the 0.4 mm thick magnetic material is employed on a metallic ground plane.In addition,the complex permittivity and complex permeability of the magnetic material are given.Finally,we fabricate a prototype of the proposed absorber and obtain a measurement result which is in good agreement with the full-wave simulation result.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471387,61271250,and 61571460)
文摘In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.
文摘A thick-screen frequency selective surface (FSS) has not only a broad bandwidth but also the advantages of overcoming the multilayer FSS shortcoming of complex structure and low transmittance of centre frequency due to the cascade of FSSs, and this means it could potentially be applied in a stealth curved streamlined radome. However, there is an unsteadiness of centre frequency in a wide range of incident angles and another unsteadiness of polarization in a big incident angle. In order to solve these problems, in this paper we provide a novel four-legged loaded element thick-screen FSS. The structure is analysed and simulated using the mode matching method and moment method. The centre frequency, the transmittance of centre frequency, and bandwidth of the structure are investigated when some parameters including the polarization at a big incident angle and the incident angles of TE &: TM waves are changed. The novel four-legged loaded element thick-screen FSS has better transmission properties with a better steadiness of polarization and incident angle independence. The novel structure of the four-legged loaded element thick-screen FSS provides a valuable reference for their application in a stealth curved streamlined radome.
文摘An equivalent-circuit model is used to analyse the improvement of the wave absorbing performance of the lossy frequency selective surface(FSS) absorber by using a magnetic substrate,showing that it is possible to widen the wave absorbing bandwidth.Three pieces of magnetic substrates are prepared.According to the complex permittivity and permeability,the reflectivity of the corresponding absorber is calculated by the finite difference time-domain(FDTD) method,and the bandwidth of the reflectivity below 10 dB is optimized by genetic algorithm.The calculated results indicate that the wave absorbing performance is significantly improved by increasing the complex permeability of the substrate;the reflectivity bandwidth below 10 dB of the single layer FSS absorber can reach 3.6-18 GHz with a thickness of 5 mm,which is wider than that with a dielectric substrate.The density of the FSS absorber is only 0.92 g/cm 3.Additionally,the absorption band can be further widened by inserting a second lossy FSS.Finally,a double layer lossy FSS absorber with a magnetic substrate is fabricated based on the design result.The experimental result is consistent with the design one.
基金supported by the National Defense Innovation Foundation of Chinese Academy of Sciences (Grant No CXJJ-149)
文摘This paper investigates the frequency-selective property of a planar layer consisting of period arrays both theoretically and experimentally for different polarizations at arbitrary incident angle. The novel element is designed by loading the rectangular microstrip element with L-shaped conducting patch at its two ends. Based on the spectral-domain method, the frequency response including angle effect and polarization effect of the frequency selective surface (FSS) structure are analysed and the plots of the frequency versus transmission coefficient are obtained. As a result of the numerical analysis, it is shown that if the source polarization is changed, polarization-independence of previous FSS design can be achieved only for normal incidence, which limits most FSS applications. But in our proposed structure, the better polarization-independency for arbitrary incident angle can be achieved. It is observed that the simulated result comes very close to the experimental result.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647105)
文摘Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.
基金supported by the National Natural Science Foundation of China (Grant No. 51207060)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090142110004)
文摘We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.
基金supported by the National Natural Science Foundation of China(Grant No.61401424)
文摘In this paper, we present an infrared transparent frequency selective surface(ITFSS) based on iterative metallic meshes, which possesses the properties of high transmittance in infrared band and band-pass effect in millimeter wave band. Cross-slot units are designed on the iterative metallic meshes, which is composed of two same square metallic meshes with a misplaced overlap. In the infrared band of 3–5 μm, the ITFSS has an average transmittance of 80% with a Mg F2 substrate. In the millimeter wave band, a transmittance of-0.74 d B at the resonance frequency of 39.4 GHz is obtained. Moreover, theoretical simulations of the ITFSS diffractive characteristics and transmittance response are also investigated in detail. This ITFSS may be an efficient way to achieve the metamaterial millimeter wave/infrared functional film.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172012)
文摘In order to realize the tunable performance of a frequency selective surface (FSS), a new unit cell is designed in this paper by properly adding two metal shorts to the ring slot. Based on the spectral-domain method, the frequency responses of the FSS structure with two shorts per slot ring are analysed for both the horizontal and the vertical polarizations at the normal incidence. It is demonstrated that the presence of the metal shorts does not affect the resonant frequency of the horizontally polarized wave but doubles the resonant frequency of the vertically polarized wave. Therefore based on the analysis of the novel transmission properties, a new approach to adjusting the resonant frequency by rotating the FSS screen 90° is presented in this paper.
文摘We report the design of three frequency selective surface (FSS) filters used on the FengYun-4 (FY-4) microwave satellite, which separate five-frequency bands in the frequency range of 50-429 GHz with the insertion loss less than 0.4 dB, and separation between adjacent channels more than 20 dB for either TE or TM incidence. Firstly, we briefly introduce the disadvantages of two types of FSS filter: waveguide-array FSS and printed FSS, which are commonly employed in the millimeter and sub-millimeter wave band. In order to meet the insertion loss requirement and specified spectral transmission response, we adopt a filter composed of two closely spaced freestanding metal plates, which con- tains an array of resonant ring slot elements. Computer simulation technology (CST) is used to optimize the structural dimensions of the resonant unit and interlayer separation. Numerical results show that these FSS filters exhibit trans- mission loss of less than 0.4 dB and separation between adjacent channels of more than 20 dB. Simulated transmission coefficients are in close agreement with the required specification, and even exceed the performance specifications.
文摘Based on previous work, a novel Frequency Selective Surface (FSS) consisting of two metallic layers is proposed. The first layer is inductive-designed to generate the band-pass performance, while the second layer is capacitive-designed so that the miniaturization characteristic can be further improved. As a result, compared with the traditional single-layer structure, the profile of the FSS proposed is relatively small with the cell’s dimension only 0.0814λ × 0.0814λ. Moreover, the structure’s stability corresponding to waves of different polarizations and incident angles are also testified, which ensures the practicability of the proposed structure.
文摘Based on the experimental results, in which the fabricated error of the double layer frequency selective surface (FSS) leads to the transmission loss and the resonant frequency leaves away the design resonant frequency, the inter-layer separation distance (ISD) and the unit cell aligning error (UAE) were used as main variables to study the transmission performance attenuation of the double layer FSS configuration. The numerical analysis model for ISD and UAE was established and also was used to simulate the ring unit cell FSS transmission performance by the finite element and periodic moment methods. The double layer ring aperture FSS configuration designed was used as the numerical model. As a result of the numerical analysis, it is shown that both ISD and UAE produce insertion transmission loss (ITL) and insertion phase distortion (IPD) directly. Furthermore, ISD results in more loss of the amplitude of the transmitted signal for the FSS than UAE. It is significant for the designer of the multiplayer FSS to assign the fabricated error of the FSS dielectric layers. The UAE introduces the insertion phase variation badly.