A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This me...A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This method is based on accurate estimation and correction of the phase and amplitude error along two dimensions(range and azimuth), i.e., the error estimation inside the subpulse(in-subpulse error) and across the stepped frequency subpulses(cross-subpulse error) of transmitted CSSF signals. Validated both with simulated data and experimental data recorded in the deformation monitoring campaign, it can be seen that the method as well as the relative conclusions can be fully and effectively applied to most of the stepped frequency systems.展开更多
We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit....We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10-12/s orders of magnitude.展开更多
Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar...Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.展开更多
基金supported by the National Natural Science Foundation of China(6112010600461225005)
文摘A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This method is based on accurate estimation and correction of the phase and amplitude error along two dimensions(range and azimuth), i.e., the error estimation inside the subpulse(in-subpulse error) and across the stepped frequency subpulses(cross-subpulse error) of transmitted CSSF signals. Validated both with simulated data and experimental data recorded in the deformation monitoring campaign, it can be seen that the method as well as the relative conclusions can be fully and effectively applied to most of the stepped frequency systems.
基金Supported by the National Natural Science Foundation of China under Grant No 11173026the International GNSS Monitoring and Assessment System(iGMAS)of National Time Service Centre
文摘We present a new digital phase lock technology to achieve the frequency control and transformation through high precision multi-cycle group synchronization between signals without the frequency transformation circuit. In the case of digital sampling, the passing zero point of the phase of the controlled signal has the phase step characteristic, the phase step of the passing zero point is monotonic continuous with high resolution in the phase lock process, and using the border effect of digital fuzzy area, the gate can synchronize with the two signals, the quantization error is reduced. This technique is quite different from the existing methods of frequency transformation and frequency synthesis, the phase change characteristic between the periodic signals with different nominal is used. The phase change has the periodic phenomenon, and it has the high resolution step value. With the application of the physical law, the noise is reduced because of simplifying frequency transformation circuits, and the phase is locked with high precision. The regular phase change between frequency signals is only used for frequency measurement, and the change has evident randomness, but this randomness is greatly reduced in frequency control, and the certainty of the process result is clear. The experiment shows that the short term frequency stability can reach 10-12/s orders of magnitude.
基金Project supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40561)the Scientific Research Program of National University of Defense Technology,China(No.ZK22-46)the National Natural Science Foundation of China(Nos.61890542,62001481,and 62071475)。
文摘Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.