Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substra...Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substrate at 400 ℃ by radio frequency (RF) magnetron co-sputtering using titanium nitride (TIN) and aluminum nitride (AlN) as ceramic targets. The temperature coefficient of resistivity (TCR) and oxidation resistance, which are the most important properties of a heat resistor, were studied depending on the plasma power density applied during sputtering. With the increasing plasma power density, the crystallinity, grain size and surface roughness of the applied film increased, resulting in less grain boundaries with large grains. The Ti, Al and N binding energies obtained from X-ray photoelectron spectroscopy analysis disclosed the nitrogen deficit in the TiAlN stoichiometry that makes the films more electrically resistive. The highest oxidation resistance and the lowest TCR of-765.43×10^-6 K-l were obtained by applying the highest plasma power density.展开更多
In this study, the effects of temperature and frequency on minority carrier diffusion coefficient in silicon solar cell under a magnetic field are presented. Using two methods (analytic and graphical), the optimum tem...In this study, the effects of temperature and frequency on minority carrier diffusion coefficient in silicon solar cell under a magnetic field are presented. Using two methods (analytic and graphical), the optimum temperature corresponding to maximum diffusion coefficient is determined versus cyclotronic frequency and magnetic field.展开更多
In this paper, the dependences of the frequeucy-temperature coefficient (df/dt) of an electrode-sepa-rated piezolectric sensor(ESPS) on desity, viscosity, permittivity and conductivity of the solution to be tested wer...In this paper, the dependences of the frequeucy-temperature coefficient (df/dt) of an electrode-sepa-rated piezolectric sensor(ESPS) on desity, viscosity, permittivity and conductivity of the solution to be tested were investigated’ A comparison of the frequency -temperature coefficient between the ESPS and a conwentioal piezoelectric quartz crystal was made, In a nou-electrolyte liquid, the df/dt)walwe of the ESPS increases with the increase of viscosity, density and permittivity of the liquid There is df/dt>0 in low or high conductivity solutions, but df/dt>0 in middle conductivity solution.And two zoues where df/dt is approximately equal to zero are observed in electrolyte展开更多
To obtain frequency-temperature compensation in a sapphire loaded cavity for hydrogen maser, a dielectric named SrTiO3 is employed whose temperature coefficient of permittivity is opposite to that of sapphire. Based o...To obtain frequency-temperature compensation in a sapphire loaded cavity for hydrogen maser, a dielectric named SrTiO3 is employed whose temperature coefficient of permittivity is opposite to that of sapphire. Based on theoretical analysis and computer simulation, a TE011 mode of a sapphire loaded cavity associated with two small rings of SrTiO3 with different thickness is solved, and the useful parameters that influence the temperature coefficient of cavity are calculated. Finally an experiment is brought forward and its results are very close to the computing results. When the thickness of SiTiO3 dielectric is 7 mm and the diameter is 17 mm in configuration b, the temperature coefficient of cavity is decreased from -58.8 kHz/K to -8.2 kHz/K and the quality factor is 40248.展开更多
This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical syst...This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical systems(MEMS)disk resonators through analysis and simulation.These parameters include the crystallographic orientation,dopant,substrate thickness,and temperature.The resonators operate in the elliptical,higher order,and flexural modes.The simulation results show that i)the turnover points of the resonators exist at 55°C,-50°C,40°C,and-10°C for n-doped silicon with the doping concentration of 2×1019 cm-3 and the Si thickness of 3.5μm,and these points are shifted with the substrate thickness and mode variations;ii)compared with pure Si,the modal-frequency splitting for n-doped Si is higher and increases from 5%to 10%for all studied modes;iii)Q of the resonators depends on the temperature and dopant.Therefore,the turnover,modal-frequency splitting,and Q of the resonators depend on the thickness and material of the substrate and the temperature.This work offers an analysis and design platform for high-performance MEMS gyroscopes as well as oscillators in terms of the temperature compensation by n-doped Si.展开更多
The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to ...The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T);H) and Sb2(α, D(ω, T);H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si).展开更多
介绍一种基于压缩SF6气体绝缘的正立式标准电容器的,可测量600 k V工频电压,1 200 k V冲击电压。使用有限元分析软件ANSOFT对高压套管进行仿真计算,套管的接地屏蔽以及中间电位屏蔽的位置和尺寸进行优化设计。中间电位屏蔽上的电压系数k...介绍一种基于压缩SF6气体绝缘的正立式标准电容器的,可测量600 k V工频电压,1 200 k V冲击电压。使用有限元分析软件ANSOFT对高压套管进行仿真计算,套管的接地屏蔽以及中间电位屏蔽的位置和尺寸进行优化设计。中间电位屏蔽上的电压系数k=41.6%时,套管利用率最佳。对于电极的设计,依据电场大小确定高压电极的直径和上下圆弧的尺寸,不断优化屏蔽电极的尺寸,尽可能均匀低压电极表面的电场强度。雷电冲击耐受电压1 440 k V下,装置壳体内部最大电场为18.1 k V/mm。为了改善标准电容器的频率特性,设计时低压电极与外壳内壁的距离仅15 mm。根据标准电容器的尺寸和材料,计算得到温度系数为2.05×10^(-5)/K,600 k V时的电压系数为5.5×10^(-7),偏心引起的电容量变化为3.95×10^(-5),为电极安装之后的固定误差。展开更多
基金Project (M-2009-01-0029) supported by Fundamental R&D Program for Core Technology of Materials, Korea
文摘Titanium aluminum nitride (TiAlN) film, as a possible substitute for the conventional tantalum nitride (TAN) or tantalum-aluminum (TaAl) heater resistor in inkjet printheads, was deposited on a Si(100) substrate at 400 ℃ by radio frequency (RF) magnetron co-sputtering using titanium nitride (TIN) and aluminum nitride (AlN) as ceramic targets. The temperature coefficient of resistivity (TCR) and oxidation resistance, which are the most important properties of a heat resistor, were studied depending on the plasma power density applied during sputtering. With the increasing plasma power density, the crystallinity, grain size and surface roughness of the applied film increased, resulting in less grain boundaries with large grains. The Ti, Al and N binding energies obtained from X-ray photoelectron spectroscopy analysis disclosed the nitrogen deficit in the TiAlN stoichiometry that makes the films more electrically resistive. The highest oxidation resistance and the lowest TCR of-765.43×10^-6 K-l were obtained by applying the highest plasma power density.
文摘In this study, the effects of temperature and frequency on minority carrier diffusion coefficient in silicon solar cell under a magnetic field are presented. Using two methods (analytic and graphical), the optimum temperature corresponding to maximum diffusion coefficient is determined versus cyclotronic frequency and magnetic field.
文摘In this paper, the dependences of the frequeucy-temperature coefficient (df/dt) of an electrode-sepa-rated piezolectric sensor(ESPS) on desity, viscosity, permittivity and conductivity of the solution to be tested were investigated’ A comparison of the frequency -temperature coefficient between the ESPS and a conwentioal piezoelectric quartz crystal was made, In a nou-electrolyte liquid, the df/dt)walwe of the ESPS increases with the increase of viscosity, density and permittivity of the liquid There is df/dt>0 in low or high conductivity solutions, but df/dt>0 in middle conductivity solution.And two zoues where df/dt is approximately equal to zero are observed in electrolyte
文摘To obtain frequency-temperature compensation in a sapphire loaded cavity for hydrogen maser, a dielectric named SrTiO3 is employed whose temperature coefficient of permittivity is opposite to that of sapphire. Based on theoretical analysis and computer simulation, a TE011 mode of a sapphire loaded cavity associated with two small rings of SrTiO3 with different thickness is solved, and the useful parameters that influence the temperature coefficient of cavity are calculated. Finally an experiment is brought forward and its results are very close to the computing results. When the thickness of SiTiO3 dielectric is 7 mm and the diameter is 17 mm in configuration b, the temperature coefficient of cavity is decreased from -58.8 kHz/K to -8.2 kHz/K and the quality factor is 40248.
文摘This paper investigates the effects of material and dimension parameters on the frequency splitting,frequency drift,and quality factor(Q)of aluminium nitride(AlN)-on-n-doped/pure silicon(Si)microelectromechanical systems(MEMS)disk resonators through analysis and simulation.These parameters include the crystallographic orientation,dopant,substrate thickness,and temperature.The resonators operate in the elliptical,higher order,and flexural modes.The simulation results show that i)the turnover points of the resonators exist at 55°C,-50°C,40°C,and-10°C for n-doped silicon with the doping concentration of 2×1019 cm-3 and the Si thickness of 3.5μm,and these points are shifted with the substrate thickness and mode variations;ii)compared with pure Si,the modal-frequency splitting for n-doped Si is higher and increases from 5%to 10%for all studied modes;iii)Q of the resonators depends on the temperature and dopant.Therefore,the turnover,modal-frequency splitting,and Q of the resonators depend on the thickness and material of the substrate and the temperature.This work offers an analysis and design platform for high-performance MEMS gyroscopes as well as oscillators in terms of the temperature compensation by n-doped Si.
文摘The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T);H) and Sb2(α, D(ω, T);H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si).
文摘介绍一种基于压缩SF6气体绝缘的正立式标准电容器的,可测量600 k V工频电压,1 200 k V冲击电压。使用有限元分析软件ANSOFT对高压套管进行仿真计算,套管的接地屏蔽以及中间电位屏蔽的位置和尺寸进行优化设计。中间电位屏蔽上的电压系数k=41.6%时,套管利用率最佳。对于电极的设计,依据电场大小确定高压电极的直径和上下圆弧的尺寸,不断优化屏蔽电极的尺寸,尽可能均匀低压电极表面的电场强度。雷电冲击耐受电压1 440 k V下,装置壳体内部最大电场为18.1 k V/mm。为了改善标准电容器的频率特性,设计时低压电极与外壳内壁的距离仅15 mm。根据标准电容器的尺寸和材料,计算得到温度系数为2.05×10^(-5)/K,600 k V时的电压系数为5.5×10^(-7),偏心引起的电容量变化为3.95×10^(-5),为电极安装之后的固定误差。