In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,...In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.展开更多
The objective of this study is to determine the time-dependent strengths of salt mine pillars in the Maha Sarakham formation, northeast of Thailand. Strain rate-controlled triaxial compression tests have been performe...The objective of this study is to determine the time-dependent strengths of salt mine pillars in the Maha Sarakham formation, northeast of Thailand. Strain rate-controlled triaxial compression tests have been performed on salt specimens under confining pressures from 0 MPa to 12 MPa. The strain rates are from 10^(-7) s^(-1) to 10^(-4) s^(-1). The axial stresses and lateral strains are monitored through the strain-softening region. The results indicate that the strengths and elastic moduli increase exponentially with the strain rates. The power creep law parameters are calibrated with the test results, and hence allows constructing series of strain-time curves for the salt pillars under different depths and extraction ratios. The strain energy density principle is applied to develop a strength criterion for the salt pillars. Combining this criterion with the series of the strain-time curves the time-dependent strengths of the salt pillars for different extraction ratios can be predicted.展开更多
基金Project(10472134) supported by the National Natural Science Foundation of China
文摘In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.
基金funded by Suranaree University of Technology and by the Higher Education Promotion and National Research University of Thailand
文摘The objective of this study is to determine the time-dependent strengths of salt mine pillars in the Maha Sarakham formation, northeast of Thailand. Strain rate-controlled triaxial compression tests have been performed on salt specimens under confining pressures from 0 MPa to 12 MPa. The strain rates are from 10^(-7) s^(-1) to 10^(-4) s^(-1). The axial stresses and lateral strains are monitored through the strain-softening region. The results indicate that the strengths and elastic moduli increase exponentially with the strain rates. The power creep law parameters are calibrated with the test results, and hence allows constructing series of strain-time curves for the salt pillars under different depths and extraction ratios. The strain energy density principle is applied to develop a strength criterion for the salt pillars. Combining this criterion with the series of the strain-time curves the time-dependent strengths of the salt pillars for different extraction ratios can be predicted.