Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d...Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.展开更多
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf...To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.展开更多
To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional...To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional Bayesian inversion uses the Monte Carlo method to search the model space and yields models that simultaneously satisfy the acceptance probability and data fitting requirements. Finally, we obtain the probability distribution and uncertainty of the model parameters as well as the maximum probability. Because it is difficult to know the height of the transmitting source during flight, we consider a fixed and a variable flight height. Furthermore, we introduce weights into the prior probability density function of the resistivity and adjust the constraint strength in the inversion model by changing the weighing coefficients. This effectively solves the problem of unsatisfactory inversion results in the middle high-resistivity layer. We validate the proposed method by inverting synthetic data with 3% Gaussian noise and field survey data.展开更多
This study investigates the groundwater aquifer located in Fayuim oasis. In this study, two of the electromagnetic measurement methods have been used in determining the hydrological situation in the Fayoum oasis. The ...This study investigates the groundwater aquifer located in Fayuim oasis. In this study, two of the electromagnetic measurement methods have been used in determining the hydrological situation in the Fayoum oasis. The first is airborne electromagnetic (AEM) which, sometimes is referred to as Helicopter electromagnetic (HEM) and the second is ground Time-domain Electromagnetic method (TEM). The subsurface consists of four geoelectrical layers with a rough slope towards the center. The third and the fourth layers in the succession are suggested to be the two-groundwater aquifers. The third layer saturates with fresh water overlying saline water which exists in the bottom of the second one. It is worth mentioning that the depth of the fresh water surface undulates between the surface level in two lakes in the study area and 57 meters below the ground, whereas the thickness of the fresh water aquifer varies from 13 to 36 meters. The depth of the saline water surface undulates between 59 and 81 meters below the ground. In general, airborne electromagnetic surveying has the advantage of fast resistivity mapping with high lateral resolution. Groundbased geophysical surveys are often more accurate, but they are definitely slower than airborne surveys. It depends on targets of interest, time, budget, and manpower available by the method or the combination of methods that will be chosen. A combination of different methods is useful to obtain a detailed understanding of the subsurface resistivity distribution.展开更多
为研究自由飞行条件下给定间距的飞机碰撞风险评估问题,通过分析自由飞行下的飞机碰撞过程,分解碰撞事故发生过程,将与碰撞密切相关的风险因素或过程事件视为节点,并确定节点之间的关系,建立自由飞行状态下基于贝叶斯网络的碰撞风险模型...为研究自由飞行条件下给定间距的飞机碰撞风险评估问题,通过分析自由飞行下的飞机碰撞过程,分解碰撞事故发生过程,将与碰撞密切相关的风险因素或过程事件视为节点,并确定节点之间的关系,建立自由飞行状态下基于贝叶斯网络的碰撞风险模型;利用传统的位置误差模型,以及最大期望(EM)算法,求解节点事件的先验概率,导入贝叶斯网络模型,求得2架飞机碰撞风险。算例结果表明,用该模型计算出的碰撞风险与实际情况相符,算例中飞机之间保持8 n mile的间距是安全的;利用该模型可在满足安全目标水平条件下缩小最小安全间距,提高空域利用率。展开更多
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the National Natural Science Foundation of China(No.41504083)National Basic Research Program of China(973Program)(No.2013CB429805)
文摘Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.
基金supported by the Key Natural Science Foundation(No.41530320)Natural Science Foundation(No.41274121)+1 种基金Natural Science Foundation for young scientist(No.41404093)the Projects on the Development of the Key Equipment of Chinese Academy of Science(No.ZDYZ2012-1-03)
文摘To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.
基金This paper was financially supported by the Key National Research Project of China (Nos. 2017YFC0601900 and 2016YFC0303100), and the Key Program of National Natural Science Foundation of China (No. 41530320) and Surface Project (No. 41774125).
文摘To reduce the dependence of EM inversion on the choice of initial model and to obtain the global minimum, we apply transdimensional Bayesian inversion to time-domain airborne electromagnetic data. The transdimensional Bayesian inversion uses the Monte Carlo method to search the model space and yields models that simultaneously satisfy the acceptance probability and data fitting requirements. Finally, we obtain the probability distribution and uncertainty of the model parameters as well as the maximum probability. Because it is difficult to know the height of the transmitting source during flight, we consider a fixed and a variable flight height. Furthermore, we introduce weights into the prior probability density function of the resistivity and adjust the constraint strength in the inversion model by changing the weighing coefficients. This effectively solves the problem of unsatisfactory inversion results in the middle high-resistivity layer. We validate the proposed method by inverting synthetic data with 3% Gaussian noise and field survey data.
文摘This study investigates the groundwater aquifer located in Fayuim oasis. In this study, two of the electromagnetic measurement methods have been used in determining the hydrological situation in the Fayoum oasis. The first is airborne electromagnetic (AEM) which, sometimes is referred to as Helicopter electromagnetic (HEM) and the second is ground Time-domain Electromagnetic method (TEM). The subsurface consists of four geoelectrical layers with a rough slope towards the center. The third and the fourth layers in the succession are suggested to be the two-groundwater aquifers. The third layer saturates with fresh water overlying saline water which exists in the bottom of the second one. It is worth mentioning that the depth of the fresh water surface undulates between the surface level in two lakes in the study area and 57 meters below the ground, whereas the thickness of the fresh water aquifer varies from 13 to 36 meters. The depth of the saline water surface undulates between 59 and 81 meters below the ground. In general, airborne electromagnetic surveying has the advantage of fast resistivity mapping with high lateral resolution. Groundbased geophysical surveys are often more accurate, but they are definitely slower than airborne surveys. It depends on targets of interest, time, budget, and manpower available by the method or the combination of methods that will be chosen. A combination of different methods is useful to obtain a detailed understanding of the subsurface resistivity distribution.
文摘为研究自由飞行条件下给定间距的飞机碰撞风险评估问题,通过分析自由飞行下的飞机碰撞过程,分解碰撞事故发生过程,将与碰撞密切相关的风险因素或过程事件视为节点,并确定节点之间的关系,建立自由飞行状态下基于贝叶斯网络的碰撞风险模型;利用传统的位置误差模型,以及最大期望(EM)算法,求解节点事件的先验概率,导入贝叶斯网络模型,求得2架飞机碰撞风险。算例结果表明,用该模型计算出的碰撞风险与实际情况相符,算例中飞机之间保持8 n mile的间距是安全的;利用该模型可在满足安全目标水平条件下缩小最小安全间距,提高空域利用率。