The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-divis...The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.展开更多
This paper studies a deconvolved Chebyshev beamforming(Dcv-Che-BF)method.Compared with other deconvolution beamforming methods,Dcv-Che-BF can preset sidelobe levels according to the actual situation,which can achieve ...This paper studies a deconvolved Chebyshev beamforming(Dcv-Che-BF)method.Compared with other deconvolution beamforming methods,Dcv-Che-BF can preset sidelobe levels according to the actual situation,which can achieve higher resolution performance.However,the performance of Dcv-Che-BF was not necessarily better with a lower preset sidelobe level in the presence of noise.Instead,it was much better when the preset side lobe level matched the signal to noise ratio of the signal.The performance of the Dcv-Che-BF method with different preset sidelobe levels was analyzed using simulation.The Dcv-Che-BF method achieved a lower sidelobe level and better resolution capability when the preset sidelobe level was slightly greater than the noise background level.To validate the feasibility and performance of the proposed method,computer simulations and sea trials were analyzed.The results show that the Dcv-Che-BF method is a robust high-resolution beamforming method that can achieve a narrow mainlobe and low sidelobe.展开更多
Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on diffe...Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.展开更多
The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to i...The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to images with limited resolution and contrast.In this paper,minimum variance(M V)adaptive beamforming and coherence factor(CF)weighting are combined to achieve an MVCF-based UACI,which can improve the cavitation imaging quality.The detailed algorithm evaluation has been investigated from both simulation and experimental data The simulation data include10point targets and a cyst,while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of1.2MHz.The advantages of the proposed methodology as well as the comparison with conventional B-mode,DAS?M V,DAS-CF and MV on the basis of compressive sensing(CS)(called MVCS)beamformers are discussed.The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio(SN R).The MVCF-based UACI has a SNR at21.82dB higher,lateral and axial resolution at2.69times and1.93times?respectively,which were compared with those of B-mode active cavitation mapping.The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution展开更多
A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with t...A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with the UAV network,we first consider both achievable secrecy rate maximization and total transmit power minimization,and formulate a multi-objective optimization problem(MOOP)using the weighted Tchebycheff approach.Then,by supposing that only imperfect channel state information based on the angular information is available,we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones.Next,we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector.Finally,simulation results illustrate that the Pareto optimal trade-off can be achieved,and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.展开更多
The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT)...The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT) beamforming method in frequency domain is being proposed. The single long-length Chirp Zeta Transform (CZT) in the original CZT beamforming is replaced by several CZTs with smaller lengths for different partitions along each dimension. The implementing routine of the algorithm is also optimized. Furthermore, an avenue to evaluate the estimating error for the angle approximation in 3-D imaging applications is presented, and an approach to attain valid partitions for the steering angles is also flhistrated. This paper demonstrates a few advantages of the proposed frequency-domain beamforming method over existing methods in terms of the computatianal complexity.展开更多
针对测深侧扫声呐进行波达方向(Direction of Arrival,DOA)估计时会受到阵元幅度、相位误差及低信噪比影响的问题,提出一种改进的波束域加权子空间拟合算法。首先,采用总体最小二乘-旋转不变子空间算法进行回波方向预估计;其次,将连续...针对测深侧扫声呐进行波达方向(Direction of Arrival,DOA)估计时会受到阵元幅度、相位误差及低信噪比影响的问题,提出一种改进的波束域加权子空间拟合算法。首先,采用总体最小二乘-旋转不变子空间算法进行回波方向预估计;其次,将连续线阵划分为多个子阵,并将各个子阵在预估计方向做加权波束形成;再次,采用加权子空间拟合(Weighted Subspace Fitting,WSF)算法构造代价函数;最后,采用阻尼牛顿法求解得到高精度的DOA估计结果。仿真结果表明,文中所提算法在阵元出现幅度相位误差条件下的角度估计均方误差相对于WSF算法减少了约0.03°。海试数据分析结果表明,文中所提算法的测深点均方误差整体优于WSF算法,其相对测深精度提高了约9.8个百分点。以上分析结果表明,文中所提算法整体优于WSF算法,可以实现在阵元幅度相位误差及低信噪比情况下的高精度DOA估计。展开更多
This paper presents a hardware architecture using mixed pipeline and parallel processing for complex division based on dichotomous coordinate descent(DCD) iterations. The objective of the proposed work is to achieve l...This paper presents a hardware architecture using mixed pipeline and parallel processing for complex division based on dichotomous coordinate descent(DCD) iterations. The objective of the proposed work is to achieve low-latency and resource optimized complex divider architecture in adaptive weight computation stage of minimum variance distortionless response(MVDR)algorithm. In this work, computation of complex division is modeled as a 2×2 linear equation solution problem and the DCD algorithm allows linear systems of equations to be solved with high degree of computational efficiency. The operations in the existing DCD algorithm are suitably parallel pipelined and the performance is optimized to 2 clock cycles per iteration. To improve the degree of parallelism, a parallel column vector read architecture is devised.The proposed work is implemented on the field programmable gate array(FPGA) platform and the results are compared with state-of-art literature. It concludes that the proposed architecture is suitable for complex division in adaptive weight computation stage of MVDR beamformer. We demonstrate the performance of the proposed architecture for MVDR beamformer employed in medical ultrasound imaging applications.展开更多
As the scale of software systems expands,maintaining their stable operation has become an extraordinary challenge.System logs are semi-structured text generated by the recording function in the source code and have im...As the scale of software systems expands,maintaining their stable operation has become an extraordinary challenge.System logs are semi-structured text generated by the recording function in the source code and have important research significance in software service anomaly detection.Existing log anomaly detection methods mainly focus on the statistical characteristics of logs,making it difficult to distinguish the semantic differences between normal and abnormal logs,and performing poorly on real-world industrial log data.In this paper,we propose an unsupervised framework for log anomaly detection based on generative pre-training-2(GPT-2).We apply our approach to two industrial systems.The experimental results on two datasets show that our approach outperforms state-of-the-art approaches for log anomaly detection.展开更多
为解决直接数据域(direct data domain,DDD)算法波束形成旁瓣电平高的问题,在约束优化的基础上提出了加权DDD波束形成算法。加权算法首先根据波束指向或者预成波束方向给出合适的主瓣宽度,然后在旁瓣区域约束最高旁瓣电平的高度,达到旁...为解决直接数据域(direct data domain,DDD)算法波束形成旁瓣电平高的问题,在约束优化的基础上提出了加权DDD波束形成算法。加权算法首先根据波束指向或者预成波束方向给出合适的主瓣宽度,然后在旁瓣区域约束最高旁瓣电平的高度,达到旁瓣抑制的效果。仿真分析了固定旁瓣电平变化主瓣宽度和固定主瓣宽度变化旁瓣电平两种约束优化形式。结果表明,加权DDD波束形成具有良好性能,能在预设主瓣宽度略宽于原波束主瓣宽度时,旁瓣电平能够满足预设要求。展开更多
基金supported by the ZTE Industry⁃University⁃Institute Cooper⁃ation Funds under Grant No.2021ZTE01⁃03.
文摘The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design.
基金Supported by the National Natural Science Foundation of China under Grant No.61801140.
文摘This paper studies a deconvolved Chebyshev beamforming(Dcv-Che-BF)method.Compared with other deconvolution beamforming methods,Dcv-Che-BF can preset sidelobe levels according to the actual situation,which can achieve higher resolution performance.However,the performance of Dcv-Che-BF was not necessarily better with a lower preset sidelobe level in the presence of noise.Instead,it was much better when the preset side lobe level matched the signal to noise ratio of the signal.The performance of the Dcv-Che-BF method with different preset sidelobe levels was analyzed using simulation.The Dcv-Che-BF method achieved a lower sidelobe level and better resolution capability when the preset sidelobe level was slightly greater than the noise background level.To validate the feasibility and performance of the proposed method,computer simulations and sea trials were analyzed.The results show that the Dcv-Che-BF method is a robust high-resolution beamforming method that can achieve a narrow mainlobe and low sidelobe.
基金supported by ZTE Industry-University-Institute Cooperation Funds,the Natural Science Foundation of Shanghai under Grant No.23ZR1407300the National Natural Science Foundation of China un⁃der Grant No.61771147.
文摘Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.
基金National Natural Science Foundation of China(No.11604305)Key Research and Development Projects from Ministry of Science and Technology of the People’s Republic of China(No.2016YFC0101605)
文摘The ultrafast active cavitation imaging(UACI)based on plane wave transmission and delay-and-sum(DAS)beamforming has been developed to monitor cavitation events with a high frame rate.However,DAS beamforming leads to images with limited resolution and contrast.In this paper,minimum variance(M V)adaptive beamforming and coherence factor(CF)weighting are combined to achieve an MVCF-based UACI,which can improve the cavitation imaging quality.The detailed algorithm evaluation has been investigated from both simulation and experimental data The simulation data include10point targets and a cyst,while the experimental data are obtained by detecting the dissipation of cavitation bubbles in water excited by a single element transducer with frequency of1.2MHz.The advantages of the proposed methodology as well as the comparison with conventional B-mode,DAS?M V,DAS-CF and MV on the basis of compressive sensing(CS)(called MVCS)beamformers are discussed.The results show that MVCF beamformer has a significant improvement in terms of both resolutions and signal-to-noise ratio(SN R).The MVCF-based UACI has a SNR at21.82dB higher,lateral and axial resolution at2.69times and1.93times?respectively,which were compared with those of B-mode active cavitation mapping.The MVCF-based UACI can be used to image the residual cavitation bubbles with a higher SNR and better spatial resolution
基金supported by the Key International Cooperation Research Project(61720106003)the National Natural Science Foundation of China(62001517)+2 种基金the Shanghai Aerospace Science and Technology Innovation Foundation(SAST2019-095)the NUPTSF(NY220111)the Foundational Research Project of Complex Electronic System Simulation Laboratory(DXZT-JC-ZZ-2019-009,DXZTJC-ZZ-2019-005).
文摘A multi-objective optimization based robust beamforming(BF)scheme is proposed to realize secure transmission in a cognitive satellite and unmanned aerial vehicle(UAV)network.Since the satellite network coexists with the UAV network,we first consider both achievable secrecy rate maximization and total transmit power minimization,and formulate a multi-objective optimization problem(MOOP)using the weighted Tchebycheff approach.Then,by supposing that only imperfect channel state information based on the angular information is available,we propose a method combining angular discretization with Taylor approximation to transform the non-convex objective function and constraints to the convex ones.Next,we adopt semi-definite programming together with randomization technology to solve the original MOOP and obtain the BF weight vector.Finally,simulation results illustrate that the Pareto optimal trade-off can be achieved,and the superiority of our proposed scheme is confirmed by comparing with the existing BF schemes.
基金National High Technology Research and Development Program (863 Program) of China (No. 2010AA09Z104)the Fundamental Research Funds for the Central Universities
文摘The computational load is prohibitive for real-time image generation in 3-D sonar systems, particularly when the steering angle approximation is required. In this paper, a novel multiple Chirp Zeta Transforms (MCZT) beamforming method in frequency domain is being proposed. The single long-length Chirp Zeta Transform (CZT) in the original CZT beamforming is replaced by several CZTs with smaller lengths for different partitions along each dimension. The implementing routine of the algorithm is also optimized. Furthermore, an avenue to evaluate the estimating error for the angle approximation in 3-D imaging applications is presented, and an approach to attain valid partitions for the steering angles is also flhistrated. This paper demonstrates a few advantages of the proposed frequency-domain beamforming method over existing methods in terms of the computatianal complexity.
文摘针对测深侧扫声呐进行波达方向(Direction of Arrival,DOA)估计时会受到阵元幅度、相位误差及低信噪比影响的问题,提出一种改进的波束域加权子空间拟合算法。首先,采用总体最小二乘-旋转不变子空间算法进行回波方向预估计;其次,将连续线阵划分为多个子阵,并将各个子阵在预估计方向做加权波束形成;再次,采用加权子空间拟合(Weighted Subspace Fitting,WSF)算法构造代价函数;最后,采用阻尼牛顿法求解得到高精度的DOA估计结果。仿真结果表明,文中所提算法在阵元出现幅度相位误差条件下的角度估计均方误差相对于WSF算法减少了约0.03°。海试数据分析结果表明,文中所提算法的测深点均方误差整体优于WSF算法,其相对测深精度提高了约9.8个百分点。以上分析结果表明,文中所提算法整体优于WSF算法,可以实现在阵元幅度相位误差及低信噪比情况下的高精度DOA估计。
基金supported by Microelectronics Division of the Ministry of Electronics and Information Technology,Government of India,under SMDP-C2SD Project(9(1)/2014–MDD)
文摘This paper presents a hardware architecture using mixed pipeline and parallel processing for complex division based on dichotomous coordinate descent(DCD) iterations. The objective of the proposed work is to achieve low-latency and resource optimized complex divider architecture in adaptive weight computation stage of minimum variance distortionless response(MVDR)algorithm. In this work, computation of complex division is modeled as a 2×2 linear equation solution problem and the DCD algorithm allows linear systems of equations to be solved with high degree of computational efficiency. The operations in the existing DCD algorithm are suitably parallel pipelined and the performance is optimized to 2 clock cycles per iteration. To improve the degree of parallelism, a parallel column vector read architecture is devised.The proposed work is implemented on the field programmable gate array(FPGA) platform and the results are compared with state-of-art literature. It concludes that the proposed architecture is suitable for complex division in adaptive weight computation stage of MVDR beamformer. We demonstrate the performance of the proposed architecture for MVDR beamformer employed in medical ultrasound imaging applications.
文摘As the scale of software systems expands,maintaining their stable operation has become an extraordinary challenge.System logs are semi-structured text generated by the recording function in the source code and have important research significance in software service anomaly detection.Existing log anomaly detection methods mainly focus on the statistical characteristics of logs,making it difficult to distinguish the semantic differences between normal and abnormal logs,and performing poorly on real-world industrial log data.In this paper,we propose an unsupervised framework for log anomaly detection based on generative pre-training-2(GPT-2).We apply our approach to two industrial systems.The experimental results on two datasets show that our approach outperforms state-of-the-art approaches for log anomaly detection.
文摘为解决直接数据域(direct data domain,DDD)算法波束形成旁瓣电平高的问题,在约束优化的基础上提出了加权DDD波束形成算法。加权算法首先根据波束指向或者预成波束方向给出合适的主瓣宽度,然后在旁瓣区域约束最高旁瓣电平的高度,达到旁瓣抑制的效果。仿真分析了固定旁瓣电平变化主瓣宽度和固定主瓣宽度变化旁瓣电平两种约束优化形式。结果表明,加权DDD波束形成具有良好性能,能在预设主瓣宽度略宽于原波束主瓣宽度时,旁瓣电平能够满足预设要求。