Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were ana...Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were analyzed. The results show that the CO2 emissions of steam locomotives decreased while that of diesel locomotives increased with time, due to the continuous shift from steam to diesel and electric locomotives. The total CO2 emissions of steam and diesel locomo- tives in China decreased from 42.23 Mt in 1975 to 16.40 Mt in 2005. The emission intensity of CO2 from the two kinds of locomotives decreased at an average rate of 2.4 g (converted t kin)-1 per year. The percentage of the CO2 emissions of locomotives to the total CO2 emissions in the sector of transportation, storage and post in China also decreased persistently from 1980 to 2005.展开更多
Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnec...Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.展开更多
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med...Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent ...To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built. Two efficiency criterions of the gait are given as the energy loss function f and the unit displacement in one cycle dunit.Three parameters of the criterions affecting the efficiency of the gait ( the number of links that form the traveling wave n, the included angle between two adjacent links α, and the phase difference of adjacent included angles β) are discussed by simulations and experiments. The results show that f is insensitive to n; raising n increases dunit significantly; the maximum wave amplitude of α is a decreasing function of n; and increasing α reduces the displacement influence off when n is determined. The gait model is suitable for different inchworm locomotions of a snakelike robot whose traveling waves are formed by different numbers of identical links. A wave formed by more links or a greater relative angle between two adjacent links both lead to greater velocity of the movement.展开更多
Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires senso...Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.展开更多
Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducte...Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...展开更多
There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m...There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.展开更多
The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still nee...The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.展开更多
C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences...C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences between these two mice strains in the persistence of cocaine-induced conditioned place preference (CPP), as well as the locomotion and social behaviors after the 24-hour withdrawal from a four-day cocaine (20 mg/kg/day) administration were investigated. The results showed that the cocaine-induced CPP persisted over two weeks in C57BL/6J mice, while it diminished within one week among BALB/cJ mice. After 24-hours of cocaine withdrawal, high levels of locomotion as well as low levels of social interaction and aggressive behavior were found in C57BL/6J mice, but no significant changes were found in BALB/cJ mice, indicating that cocaine-induced CPP persistence, locomotion and social behavior are not consistent between these two strains, and that overall C57BL/6J mice are more susceptible to cocaine than BALB/cJ mice at the tested doses.展开更多
An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode ...An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.展开更多
The motion of three German Shepherd Dogs on a treadmill was recorded using a three-dimensional motion capture system. The locomotion speed of the dog was respectively set at 4km·h^-1, 5.5km·h^-1, 7 km·h...The motion of three German Shepherd Dogs on a treadmill was recorded using a three-dimensional motion capture system. The locomotion speed of the dog was respectively set at 4km·h^-1, 5.5km·h^-1, 7 km·h^-1 and 8.5 km·h^-1. By processing the acquired data, the joint trajectories of the dogs' hind limbs were computed and a time series analysis was conducted. Joint angle-angle diagrams were obtained and the Lyapunov exponents were computed. Results show that the stability decreased when speed increased, which can be attributed to the decrease in the stance phase respect to the swing phase when speed is increased. Results also show that the dogs changed gait during the tests, namely walking in the range of 4 km·h^-1 to 7 km·h^-1 and pacing at 8.5 km·h^-1 A significant drop in stability was observed from walking to pacing.展开更多
To provide basic toxicity data for formulating risk characterization benchmarks, the effects of lead on survival, locomotion, and sperm morphology were investigated in the Asian earthworm Pheretima guillelmi. The LC50...To provide basic toxicity data for formulating risk characterization benchmarks, the effects of lead on survival, locomotion, and sperm morphology were investigated in the Asian earthworm Pheretima guillelmi. The LC50 of P. guiUelmi for 7 and 14 d were 4285+339 mg/kg and 3207+248 mg/kg, which shows P. guillelmi can tolerate a higher concentration of lead nitrate. The average weight of the surviving earthworms decreased at concentration of 2800 mg Pb/kg soil, and the locomotor ability of earthworms exposed to a range of soil Pb concentrations showed a general decrease with increasing Pb concentrations. We also presented data depicting the sperm morphology of earthworms, which shows potential as a sensitive biomarker for measuring the effects of heavy metal on reproduction.展开更多
Locomotor performance in lizards is strongly affected by structural habitat. Understanding this relationship allows us to predict species distributions across habitat types. However, little information is available ab...Locomotor performance in lizards is strongly affected by structural habitat. Understanding this relationship allows us to predict species distributions across habitat types. However, little information is available about the ecological role of the locomotion of multiocellated racerunner (Eremias multiocellata) in the desert steppe ecosystem of Inner Mongolia, China. Herein, we studied the effects of habitat structure on the locomotor performance of this lizard species in the field. We found that the sprint speed of this lizard declined significantly with increasing vegetation coverage. Manipulative experiments were further conducted to examine the effects of branch barriers and surface substrates on the sprint speed of the lizard. We found that the sprint speed was significantly influenced by the surface substrates and branch barriers, and there were no interactions between them. Branch barriers impeded sprint speed, and E. multiocellata showed better locomotor performance on sandy rather than loamy substrates. Our results indicate that E. multiocellata tends to occupy open areas with sandy substrates, but its locomotor performance is not closely associated with habitat preference.展开更多
While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be contro...While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be controlled by a separate clock system. In the laboratory, this system drives clear activity rhythms throughout much of the year, not just during the mating season when horseshoe crabs express clear tidal rhythms in the field. Water temperature is a key factor influencing the expression of these rhythms: at 17~C tidal rhythms are expressed by most animals, while at I l^C expression of circatidal rhythms is rarely seen, and at 4~C rhythms are suppressed. Neither long (16:8 Light:Dark) nor short (8:16) photoperiods modify this behavior at any of these temperatures. Synchronization of these circatidal rhythms can be most readily effeeted by water pressure cycles both in situ and in the lab, while temperature and current cycles play lesser, but possibly contributory, roles. Interestingly, Light:Dark cycles appear to have synchronizing as well as "masking" effects in some individuals. Evidence that each of two daily bouts of activity are independent suggests that the Limulus circatidal rhythm of locomotion is driven by two (circalunidian) clocks, each with a period of 24.8h. While the anatomical locations of either the circadian clock, that drives fluctuations in visual sensitivity, or the circatidal clock, that controls tidal rhythms of locomotion, are currently unknown, preliminary molecular analyses have shown that a 71 kD protein that reacts with antibodies directed against the Drosophila PERIOD (PER) protein is found in both the pro- tocerebrum and the subesophageal ganglion展开更多
The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical func...The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.展开更多
Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degr...Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms.展开更多
A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs)....A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation re, suits show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup, stop, forward swimming, backward swimming, turn right and turn left.展开更多
As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well underst...As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.展开更多
Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the ...Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the physical dysfunction of elderly people. Methods: Subjects were 1124 community-dwelling Japanese people, 557 men and 567 women, aged 40-89 years. Information about the seven “loco-check” items was obtained from present inquiry sheets. Physical functions were examined by grip strength, knee extension strength, walking speed and one-leg standing time with open eyes. The averages of these test values, controlled for age and BMI, were compared between the “loco-check” (+) group and the “loco-check” (-) group. Also we examined about the trend of decline of physical function, together with SF36 physical function subscale score, as the number of the items chosen increased. Results: Adjusted average values of all four physical function examinations in the “lococheck” (+) group were significantly lower than those of the “loco-check” (-) group (all, p . Also the adjusted average values of the majority of four tests were significantly lower in those who checked each of the “loco-check” items than those who did not, for most of the items. It was also revealed that the more items subjects checked, the lower the adjusted average values were, except for one-leg standing time. It was also the case with SF36 physical function subscale score. Conclusion: We showed the utility of “loco-check” as a simple tool not only for noticing the physical dysfunction of elderly people, but also for estimating the extent of it, except for balancing ability, particularly by counting the number of checked items.展开更多
文摘Based on annual statistical data collected by the Chinese Railway Statistic Center, the CO2 emissions of locomotives during 1975-2005 were calculated and the emission intensity and its dynamic characteristics were analyzed. The results show that the CO2 emissions of steam locomotives decreased while that of diesel locomotives increased with time, due to the continuous shift from steam to diesel and electric locomotives. The total CO2 emissions of steam and diesel locomo- tives in China decreased from 42.23 Mt in 1975 to 16.40 Mt in 2005. The emission intensity of CO2 from the two kinds of locomotives decreased at an average rate of 2.4 g (converted t kin)-1 per year. The percentage of the CO2 emissions of locomotives to the total CO2 emissions in the sector of transportation, storage and post in China also decreased persistently from 1980 to 2005.
文摘Aim: This dissection study was conducted to verify if the Myofascial kinetic lines, outlined in detail in humans and recently documented in horses, were present in dogs. These dynamic lines present rows of interconnected muscles, myofascia and other fascia structures, which influence the biomechanics of the spine and limbs. Methods: Forty-two dogs of different breeds and genders were dissected, imaged, and videoed. Results: Similar kinetic lines were verified in the dog, as described in humans and horses, and additionally, three new branches of the lines were discovered. The kinetic lines described were three superficial lines: Dorsal, Ventral, and Lateral, which all started in the hindlimb and ended in the temporal and occipital regions. These lines act respectively in spinal extension, flexion, and lateral flexion. Three profound lines, which started in the tail and ended in the head. The Deep Dorsal Line followed the transversospinal myofascia. The Deep Ventral Line showed an additional start deep in the medial hind limb, continued in the hypaxial myofascia, and enveloped all the viscera. Also, the Deep Lateral Line started in the hindlimb but parted along the trunk in the deep lateral myofascial structures. Two helical lines crossed the midline two or three times and served to rotate the spine. The Functional Line established a sling from the axilla to the contralateral stifle and presented a new ipsilateral branch. The Spiral Line connected the head and the ipsilateral tarsus and additionally presented a new straight branch. The four front limb lines describe their motion: the Front Limb Protraction and Retraction, Adduction, and Abduction Lines. Conclusion: The canine lines mirrored the equine and human lines with exceptions due to differences in anatomy, foot posture, lumbosacral flexibility, and their biomechanical constitution as predator versus prey animals. Additionally, three new canine branches were verified and described.
基金Supported by National Natural Science Foundation of China(Grant Nos.U2268210,52302474,52072249).
文摘Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘To establish a universal and easily controlled gait for practical use of snakelike robot movement, an inchworm locomotion gait model based on a serpenoid curve is presented. By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built. Two efficiency criterions of the gait are given as the energy loss function f and the unit displacement in one cycle dunit.Three parameters of the criterions affecting the efficiency of the gait ( the number of links that form the traveling wave n, the included angle between two adjacent links α, and the phase difference of adjacent included angles β) are discussed by simulations and experiments. The results show that f is insensitive to n; raising n increases dunit significantly; the maximum wave amplitude of α is a decreasing function of n; and increasing α reduces the displacement influence off when n is determined. The gait model is suitable for different inchworm locomotions of a snakelike robot whose traveling waves are formed by different numbers of identical links. A wave formed by more links or a greater relative angle between two adjacent links both lead to greater velocity of the movement.
文摘Every day walking consists of frequent voluntary modifications in the gait pattern to negotiate obstacles.After spinal cord injury,stepping over an obstacle becomes challenging.Stepping over an obstacle requires sensorimotor transformations in several structures of the brain,including the parietal cortex,premotor cortex,and motor cortex.Sensory information and planning are transformed into motor commands,which are sent from the motor cortex to spinal neuronal circuits to alter limb trajectory,coordinate the limbs,and maintain balance.After spinal cord injury,bidirectional communication between the brain and spinal cord is disrupted and animals,including humans,fail to voluntarily modify limb trajectory to step over an obstacle.Therefore,in this review,we discuss the neuromechanical control of stepping over an obstacle,why it fails after spinal cord injury,and how it recovers to a certain extent.
基金the Southeast Uni-versity Foundation for Excellent Young Scholars (No.4023001013)the NIH,National Center for Foundation from Research Resource,USA
文摘Locomotion behaviors are susceptible to disruption by a broad spectrum of chemicals and environmental stresses. However, no systematic testing of locomotion behavior defects induced by metal exposure has been conducted in the model organism of nematode Caenorhabditis elegans. In this study, the acute toxicity from heavy metal exposure on the locomotion behaviors was analyzed in nematodes. Endpoints of head thrash, body bend, forward turn, backward turn, and Omega/U turn were chosen to evaluate the locomotio...
基金the National Natural Science Foundation of China (Grant No. 50579007)
文摘There are many kinds of swimming mode in the fish world, and we investigated two of them, used by cyprinids and bulltrout. In this paper we track the locomotion locus by marks in different flow velocity from 0.2 m·s^-1 to 0.8 m·s^-1. By fit the data above we could find out the locomotion mechanism of the two kinds of fish and generate a mathematical model of fish kine- matics. The cyprinid fish has a greater oscillation period and amplitude compared with the bulltrout, and the bulltrout changes velocity mainly by controlling frequency of oscillation.
基金Acknowledgement This work was supported by the National Natural Science Foundation (Grant No. 50635030).
文摘The fore leg of mole cricket (Orthoptera: Glyllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that of common hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial lo-comotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.
基金Foundation items: This research was supported by the National Nat- ural Science Foundation of China (31260513), the National Natural Science Foundation of Ningxia (NZ14077) and the Science Foundation of Beifang University of Nationalities (2012Y052)
文摘C57BL/6J and BALB/cJ mice display significant differences in sociability and response to drugs, but the phenotypic variability of their susceptibility to cocaine is still not well known. In this study, the differences between these two mice strains in the persistence of cocaine-induced conditioned place preference (CPP), as well as the locomotion and social behaviors after the 24-hour withdrawal from a four-day cocaine (20 mg/kg/day) administration were investigated. The results showed that the cocaine-induced CPP persisted over two weeks in C57BL/6J mice, while it diminished within one week among BALB/cJ mice. After 24-hours of cocaine withdrawal, high levels of locomotion as well as low levels of social interaction and aggressive behavior were found in C57BL/6J mice, but no significant changes were found in BALB/cJ mice, indicating that cocaine-induced CPP persistence, locomotion and social behavior are not consistent between these two strains, and that overall C57BL/6J mice are more susceptible to cocaine than BALB/cJ mice at the tested doses.
基金Project(61573381)supported by the National Natural Science Foundation of ChinaProject(2012AA051601)supported by the National High-tech Research and Development Program of China
文摘An improved ensemble empirical mode decomposition(EEMD) algorithm is described in this work, in which the sifting and ensemble number are self-adaptive. In particular, the new algorithm can effectively avoid the mode mixing problem. The algorithm has been validated with a simulation signal and locomotive bearing vibration signal. The results show that the proposed self-adaptive EEMD algorithm has a better filtering performance compared with the conventional EEMD. The filter results further show that the feature of the signal can be distinguished clearly with the proposed algorithm, which implies that the fault characteristics of the locomotive bearing can be detected successfully.
基金Acknowledgement This work was supported by the National Science Foundation of China (Grant No. 50875108), and the Natural Sciences and Engineering Research Council of Canada (NSERC).
文摘The motion of three German Shepherd Dogs on a treadmill was recorded using a three-dimensional motion capture system. The locomotion speed of the dog was respectively set at 4km·h^-1, 5.5km·h^-1, 7 km·h^-1 and 8.5 km·h^-1. By processing the acquired data, the joint trajectories of the dogs' hind limbs were computed and a time series analysis was conducted. Joint angle-angle diagrams were obtained and the Lyapunov exponents were computed. Results show that the stability decreased when speed increased, which can be attributed to the decrease in the stance phase respect to the swing phase when speed is increased. Results also show that the dogs changed gait during the tests, namely walking in the range of 4 km·h^-1 to 7 km·h^-1 and pacing at 8.5 km·h^-1 A significant drop in stability was observed from walking to pacing.
基金supported by the Natural Science Fund of Zhejiang Province (No. Y506255)
文摘To provide basic toxicity data for formulating risk characterization benchmarks, the effects of lead on survival, locomotion, and sperm morphology were investigated in the Asian earthworm Pheretima guillelmi. The LC50 of P. guiUelmi for 7 and 14 d were 4285+339 mg/kg and 3207+248 mg/kg, which shows P. guillelmi can tolerate a higher concentration of lead nitrate. The average weight of the surviving earthworms decreased at concentration of 2800 mg Pb/kg soil, and the locomotor ability of earthworms exposed to a range of soil Pb concentrations showed a general decrease with increasing Pb concentrations. We also presented data depicting the sperm morphology of earthworms, which shows potential as a sensitive biomarker for measuring the effects of heavy metal on reproduction.
基金performed under the approval from the Animal Ethics Committee at the Institute of Zoology,Chinese Academy of Sciences(IOZ14001)
文摘Locomotor performance in lizards is strongly affected by structural habitat. Understanding this relationship allows us to predict species distributions across habitat types. However, little information is available about the ecological role of the locomotion of multiocellated racerunner (Eremias multiocellata) in the desert steppe ecosystem of Inner Mongolia, China. Herein, we studied the effects of habitat structure on the locomotor performance of this lizard species in the field. We found that the sprint speed of this lizard declined significantly with increasing vegetation coverage. Manipulative experiments were further conducted to examine the effects of branch barriers and surface substrates on the sprint speed of the lizard. We found that the sprint speed was significantly influenced by the surface substrates and branch barriers, and there were no interactions between them. Branch barriers impeded sprint speed, and E. multiocellata showed better locomotor performance on sandy rather than loamy substrates. Our results indicate that E. multiocellata tends to occupy open areas with sandy substrates, but its locomotor performance is not closely associated with habitat preference.
文摘While eye sensitivity in the American horseshoe crab Limulus polyphemus has long been known to be under the control of an endogenous circadian clock, only recently has horseshoe crab locomotion been shown to be controlled by a separate clock system. In the laboratory, this system drives clear activity rhythms throughout much of the year, not just during the mating season when horseshoe crabs express clear tidal rhythms in the field. Water temperature is a key factor influencing the expression of these rhythms: at 17~C tidal rhythms are expressed by most animals, while at I l^C expression of circatidal rhythms is rarely seen, and at 4~C rhythms are suppressed. Neither long (16:8 Light:Dark) nor short (8:16) photoperiods modify this behavior at any of these temperatures. Synchronization of these circatidal rhythms can be most readily effeeted by water pressure cycles both in situ and in the lab, while temperature and current cycles play lesser, but possibly contributory, roles. Interestingly, Light:Dark cycles appear to have synchronizing as well as "masking" effects in some individuals. Evidence that each of two daily bouts of activity are independent suggests that the Limulus circatidal rhythm of locomotion is driven by two (circalunidian) clocks, each with a period of 24.8h. While the anatomical locations of either the circadian clock, that drives fluctuations in visual sensitivity, or the circatidal clock, that controls tidal rhythms of locomotion, are currently unknown, preliminary molecular analyses have shown that a 71 kD protein that reacts with antibodies directed against the Drosophila PERIOD (PER) protein is found in both the pro- tocerebrum and the subesophageal ganglion
文摘The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.
基金Supported by National Science-Technology Support Plan Projects of China (Grant No.2015BAK04B00)2015 Sino-German Postdoc Scholarship Program (Grant No.57165010)
文摘Locomotion and manipulation optimization is essential for the performance of tetrahedron-based mobile mechanism. Most of current optimization methods are constrained to the continuous actuated system with limited degree of freedom(DOF), which is infeasible to the optimization of binary control multi-DOF system. A novel optimization method using for the locomotion and manipulation of an 18 DOFs tetrahedron-based mechanism called 5-TET is proposed. The optimization objective is to realize the required locomotion by executing the least number of struts.Binary control strategy is adopted, and forward kinematic and tipping dynamic analyses are performed, respectively.Based on a developed genetic algorithm(GA), the optimal number of alternative struts between two adjacent steps is obtained as 5. Finally, a potential manipulation function is proposed, and the energy consumption comparison between optimal 5-TET and the traditional wheeled robot is carried out. The presented locomotion optimization and manipulation planning enrich the research of tetrahedron-based mechanisms and provide the instruction to the successive locomotion and operation planning of multi-DOF mechanisms.
文摘A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural net- work consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation re, suits show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup, stop, forward swimming, backward swimming, turn right and turn left.
基金supported by the Key Project of National Natural Science Foundation of China (No. 50635030)the National Basic Research Program ("973" Program) of China (No. 2007CB616913)+2 种基金was also supported by the China Scholarship Council (CSC)We also would like to thank Karin Jespers and Sharon Warner of the Structure and Motion Laboratory for their support of the experimental workJRH’s con-tributions were supported by research grants BB/C516844/1 and BB/F01169/1 from the BBSRC, whom we thank.
文摘As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simultaneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constrncted using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanics of the human spine.
文摘Aim: A new concept of locomotive syndrome has been proposed by the Japanese Orthopaedic Association. The aim of this study is to clarify the utility of its self-checklist, “loco-check,” as a tool for estimating the physical dysfunction of elderly people. Methods: Subjects were 1124 community-dwelling Japanese people, 557 men and 567 women, aged 40-89 years. Information about the seven “loco-check” items was obtained from present inquiry sheets. Physical functions were examined by grip strength, knee extension strength, walking speed and one-leg standing time with open eyes. The averages of these test values, controlled for age and BMI, were compared between the “loco-check” (+) group and the “loco-check” (-) group. Also we examined about the trend of decline of physical function, together with SF36 physical function subscale score, as the number of the items chosen increased. Results: Adjusted average values of all four physical function examinations in the “lococheck” (+) group were significantly lower than those of the “loco-check” (-) group (all, p . Also the adjusted average values of the majority of four tests were significantly lower in those who checked each of the “loco-check” items than those who did not, for most of the items. It was also revealed that the more items subjects checked, the lower the adjusted average values were, except for one-leg standing time. It was also the case with SF36 physical function subscale score. Conclusion: We showed the utility of “loco-check” as a simple tool not only for noticing the physical dysfunction of elderly people, but also for estimating the extent of it, except for balancing ability, particularly by counting the number of checked items.