Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability...Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.展开更多
Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslide...Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslides on such debris slopes.In this study,a cumulative damage model of debris slope with varying slope characteristics under the effects of frequent microseisms was established,based on the accurate definition of slope damage variables.The cumulative damage behaviour and the mechanisms of slope instability and sliding under frequent microseisms were thus systematically investigated through a series of shaking table tests and discrete element numerical simulations,and the influences of related parameters such as bedrock,dry density and stone content were discussed.The results showed that the instability mode of a debris slope can be divided into a vibration-compaction stage,a crack generation stage,a crack development stage,and an instability stage.Under the action of frequent microseisms,debris slope undergoes the last three stages cyclically,which causes the accumulation to slide out in layers under the synergistic action of tension and shear,causing the slope to become destabilised.There are two sliding surfaces as well as the parallel tensile surfaces in the final instability of the debris slope.In the process of instability,the development trend of the damage accumulation curve remains similar for debris slopes with different parameters.However,the initial vibration compaction effect in the bedrock-free model is stronger than that in the bedrock model,with the overall cumulative damage degree in the former being lower than that of the latter.The damage degree of the debris slope with high dry density also develops more slowly than that of the debris slope with low dry density.The damage development rate of the debris slope does not always decrease with the increase of stone content.The damage degree growth rate of the debris slope with the optimal stone content is the lowest,and the increase or decrease of the stone content makes the debris slope instability happen earlier.The numerical simulation study also further reveals that the damage in the debris slope mainly develops in the form of crack formation and penetration,in which,shear failure occurs more frequently in the debris slope.展开更多
Ever since the impoundment of Three Gorges Reservoir(TGR), the seismicity in head region of TGR has increased significantly. Coupled with wide fluctuation of water level each year, it becomes more important to study...Ever since the impoundment of Three Gorges Reservoir(TGR), the seismicity in head region of TGR has increased significantly. Coupled with wide fluctuation of water level each year, it becomes more important to study the deformation forecasting of landslides beside TGR. As a famous active landslide beside TGR, Huangtupo riverside landslide is selected for a case study. Based on long term water level fluctuation and seismic monitoring, three typical adverse conditions are determined. With the established 3D numerical landslide model, seepage-dynamic coupling calculation is conducted under the seismic intensity of V degree. Results are as follows: 1. the dynamic water pressure formed by water level fluctuation will intensify the deformation of landslide; 2. under seismic load, the dynamic hysteresis is significant in defective geological bodies, such as weak layer and slip zone soil, because of much higher damping ratios, the seismic accelerate would be amplified in these elements; 3. microseisms are not intense enough to cause the landslide instability suddenly, but long term deformation accumulation effect of landslide should be paid more attention; 4. in numerical simulation, the factors of unbalance force and excess pore pressure also can be used in forecasting deformation tendency of landslide.展开更多
基金National Natural Science Foundation of China under Grant No. 41372356the College Cultivation Project of the National Natural Science Foundation of China under Grant No. 2018PY30+1 种基金the Basic Research and Frontier Exploration Project of Chongqing,China under Grant No. cstc2018jcyj A1597the Graduate Scientific Research and Innovation Foundation of Chongqing,China under Grant No. CYS18026。
文摘Shake table testing was performed to investigate the dynamic stability of a mid-dip bedding rock slope under frequent earthquakes. Then, numerical modelling was established to further study the slope dynamic stability under purely microseisms and the influence of five factors, including seismic amplitude, slope height, slope angle, strata inclination and strata thickness, were considered. The experimental results show that the natural frequency of the slope decreases and damping ratio increases as the earthquake loading times increase. The dynamic strength reduction method is adopted for the stability evaluation of the bedding rock slope in numerical simulation, and the slope stability decreases with the increase of seismic amplitude, increase of slope height, reduction of strata thickness and increase of slope angle. The failure mode of a mid-dip bedding rock slope in the shaking table test is integral slipping along the bedding surface with dipping tensile cracks at the slope rear edge going through the bedding surfaces. In the numerical simulation, the long-term stability of a mid-dip bedding slope is worst under frequent microseisms and the slope is at risk of integral sliding instability, whereas the slope rock mass is more broken than shown in the shaking table test. The research results are of practical significance to better understand the formation mechanism of reservoir landslides and prevent future landslide disasters.
基金funded by the Natural Science Foundation of Chongqing municipality(Grant No.CSTC2021JCYJMSXMX0558)the National Key R&D Program of China(Grant No.2018YFC1504802)the Fundamental Research Funds for the Central Universities(Project No.2019CDCG0013)。
文摘Debris slopes are widely distributed across the Three Gorges Reservoir area in China,and seasonal fluctuations of the water level in the area tend to cause high-frequency microseisms that subsequently induce landslides on such debris slopes.In this study,a cumulative damage model of debris slope with varying slope characteristics under the effects of frequent microseisms was established,based on the accurate definition of slope damage variables.The cumulative damage behaviour and the mechanisms of slope instability and sliding under frequent microseisms were thus systematically investigated through a series of shaking table tests and discrete element numerical simulations,and the influences of related parameters such as bedrock,dry density and stone content were discussed.The results showed that the instability mode of a debris slope can be divided into a vibration-compaction stage,a crack generation stage,a crack development stage,and an instability stage.Under the action of frequent microseisms,debris slope undergoes the last three stages cyclically,which causes the accumulation to slide out in layers under the synergistic action of tension and shear,causing the slope to become destabilised.There are two sliding surfaces as well as the parallel tensile surfaces in the final instability of the debris slope.In the process of instability,the development trend of the damage accumulation curve remains similar for debris slopes with different parameters.However,the initial vibration compaction effect in the bedrock-free model is stronger than that in the bedrock model,with the overall cumulative damage degree in the former being lower than that of the latter.The damage degree of the debris slope with high dry density also develops more slowly than that of the debris slope with low dry density.The damage development rate of the debris slope does not always decrease with the increase of stone content.The damage degree growth rate of the debris slope with the optimal stone content is the lowest,and the increase or decrease of the stone content makes the debris slope instability happen earlier.The numerical simulation study also further reveals that the damage in the debris slope mainly develops in the form of crack formation and penetration,in which,shear failure occurs more frequently in the debris slope.
基金financially supported by the National Natural Science Foundation of China (Nos. 51409011 and 51309029)the Basic Scientific Research Operating Expenses of Central-Level Public Academies and Institutes (Nos. CKSF2014057/YT and CKSF2015051/YT)
文摘Ever since the impoundment of Three Gorges Reservoir(TGR), the seismicity in head region of TGR has increased significantly. Coupled with wide fluctuation of water level each year, it becomes more important to study the deformation forecasting of landslides beside TGR. As a famous active landslide beside TGR, Huangtupo riverside landslide is selected for a case study. Based on long term water level fluctuation and seismic monitoring, three typical adverse conditions are determined. With the established 3D numerical landslide model, seepage-dynamic coupling calculation is conducted under the seismic intensity of V degree. Results are as follows: 1. the dynamic water pressure formed by water level fluctuation will intensify the deformation of landslide; 2. under seismic load, the dynamic hysteresis is significant in defective geological bodies, such as weak layer and slip zone soil, because of much higher damping ratios, the seismic accelerate would be amplified in these elements; 3. microseisms are not intense enough to cause the landslide instability suddenly, but long term deformation accumulation effect of landslide should be paid more attention; 4. in numerical simulation, the factors of unbalance force and excess pore pressure also can be used in forecasting deformation tendency of landslide.