It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative freq...It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.展开更多
Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic pa...Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several datasets.The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns.展开更多
In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of da...In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking in...A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved.展开更多
Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidat...Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth.展开更多
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a...Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.展开更多
Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model ...Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However, because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques: single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_FP-Max further lowers the expense of time and space.展开更多
Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted freque...Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.展开更多
It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequ...It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing.展开更多
In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM...In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM) based method to refine the discovered emerging ~equent patterns for classification rule extension for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively.展开更多
In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not cons...In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.展开更多
传统周期模式挖掘忽略了模式本身的相关性和时效性,导致获取到一些实用价值有限的弱相关且时效性较低的模式。因此,提出了新颖的基于时效性和相关性约束的周期模式挖掘方法(correlation and recency periodic frequent pattern-breadth ...传统周期模式挖掘忽略了模式本身的相关性和时效性,导致获取到一些实用价值有限的弱相关且时效性较低的模式。因此,提出了新颖的基于时效性和相关性约束的周期模式挖掘方法(correlation and recency periodic frequent pattern-breadth first search,CRPFP-BFS)和(correlation and recency periodic frequent pattern-depth first search,CRPFP-DFS)。将给定的数据库压缩到一个列式结构的列表CRPFP-List中,CRPFP-BFS和CRPFP-DFS分别采用广度优先和深度优先搜索方式递归地进行挖掘,同时利用支持度、周期、时效性以及相关性剪枝策略减少搜索空间,以有效地发现相关时效周期模式。与当前最先进算法在密集数据集和稀疏数据集上进行对比实验,结果表明CRPFP-BFS和CRPFP-DFS具有较低的内存占用和更高的运行效率,并且具有良好的可扩展性,其中CRPFP-DFS适合于内存要求严格的情况,CRPFP-BFS在长事务稀疏数据集下的运行效率更高。展开更多
基金supported by the Research on Key Technologies and Typical Applications of Big Data in Railway Production and Operation(P2023S006)the Fundamental Research Funds for the Central Universities(2022JBZY023).
文摘It is of great significance to improve the efficiency of railway production and operation by realizing the fault knowledge association through the efficient data mining algorithm.However,high utility quantitative frequent pattern mining algorithms in the field of data mining still suffer from the problems of low time-memory performance and are not easy to scale up.In the context of such needs,we propose a related degree-based frequent pattern mining algorithm,named Related High Utility Quantitative Item set Mining(RHUQI-Miner),to enable the effective mining of railway fault data.The algorithm constructs the item-related degree structure of fault data and gives a pruning optimization strategy to find frequent patterns with higher related degrees,reducing redundancy and invalid frequent patterns.Subsequently,it uses the fixed pattern length strategy to modify the utility information of the item in the mining process so that the algorithm can control the length of the output frequent pattern according to the actual data situation and further improve the performance and practicability of the algorithm.The experimental results on the real fault dataset show that RHUQI-Miner can effectively reduce the time and memory consumption in the mining process,thus providing data support for differentiated and precise maintenance strategies.
文摘Periodic patternmining has become a popular research subject in recent years;this approach involves the discoveryof frequently recurring patterns in a transaction sequence. However, previous algorithms for periodic patternmining have ignored the utility (profit, value) of patterns. Additionally, these algorithms only identify periodicpatterns in a single sequence. However, identifying patterns of high utility that are common to a set of sequencesis more valuable. In several fields, identifying high-utility periodic frequent patterns in multiple sequences isimportant. In this study, an efficient algorithm called MHUPFPS was proposed to identify such patterns. To addressexisting problems, three new measures are defined: the utility, high support, and high-utility period sequenceratios. Further, a new upper bound, upSeqRa, and two new pruning properties were proposed. MHUPFPS usesa newly defined HUPFPS-list structure to significantly accelerate the reduction of the search space and improvethe overall performance of the algorithm. Furthermore, the proposed algorithmis evaluated using several datasets.The experimental results indicate that the algorithm is accurate and effective in filtering several non-high-utilityperiodic frequent patterns.
文摘In the network security system,intrusion detection plays a significant role.The network security system detects the malicious actions in the network and also conforms the availability,integrity and confidentiality of data informa-tion resources.Intrusion identification system can easily detect the false positive alerts.If large number of false positive alerts are created then it makes intrusion detection system as difficult to differentiate the false positive alerts from genuine attacks.Many research works have been done.The issues in the existing algo-rithms are more memory space and need more time to execute the transactions of records.This paper proposes a novel framework of network security Intrusion Detection System(IDS)using Modified Frequent Pattern(MFP-Tree)via K-means algorithm.The accuracy rate of Modified Frequent Pattern Tree(MFPT)-K means method infinding the various attacks are Normal 94.89%,for DoS based attack 98.34%,for User to Root(U2R)attacks got 96.73%,Remote to Local(R2L)got 95.89%and Probe attack got 92.67%and is optimal when it is compared with other existing algorithms of K-Means and APRIORI.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
文摘A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved.
基金theFundoftheNationalManagementBureauofTraditionalChineseMedicine(No .2 0 0 0 J P 5 4 )
文摘Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth.
基金Supported by the National Natural Science Foundation of China(60472099)Ningbo Natural Science Foundation(2006A610017)
文摘Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.
基金Supported by the National Natural Science Foundation of China ( No.60474022)Henan Innovation Project for University Prominent Research Talents (No.2007KYCX018)
文摘Because mining complete set of frequent patterns from dense database could be impractical, an interesting alternative has been proposed recently. Instead of mining the complete set of frequent patterns, the new model only finds out the maximal frequent patterns, which can generate all frequent patterns. FP-growth algorithm is one of the most efficient frequent-pattern mining methods published so far. However, because FP-tree and conditional FP-trees must be two-way traversable, a great deal memory is needed in process of mining. This paper proposes an efficient algorithm Unid_FP-Max for mining maximal frequent patterns based on unidirectional FP-tree. Because of generation method of unidirectional FP-tree and conditional unidirectional FP-trees, the algorithm reduces the space consumption to the fullest extent. With the development of two techniques: single path pruning and header table pruning which can cut down many conditional unidirectional FP-trees generated recursively in mining process, Unid_FP-Max further lowers the expense of time and space.
文摘Previous weighted frequent pattern (WFP) mining algorithms are not suitable for data streams for they need multiple database scans. In this paper, we present an efficient algorithm SWFP-Miner to mine weighted frequent pattern over data streams. SWFP-Miner is based on sliding window and can discover important frequent pattern from the recent data. A new refined weight definition is proposed to keep the downward closure property, and two pruning strategies are presented to prune the weighted infrequent pattern. Experimental studies are performed to evaluate the effectiveness and efficiency of SWFP-Miner.
文摘It is nontrivial to maintain such discovered frequent query patterns in real XML-DBMS because the transaction database of queries may allow frequent updates and such updates may not only invalidate some existing frequent query patterns but also generate some new frequent query patterns. In this paper, two incremental updating algorithms, FUX-QMiner and FUXQMiner, are proposed for efficient maintenance of discovered frequent query patterns and generation the new frequent query patterns when new XMI, queries are added into the database. Experimental results from our implementation show that the proposed algorithms have good performance. Key words XML - frequent query pattern - incremental algorithm - data mining CLC number TP 311 Foudation item: Supported by the Youthful Foundation for Scientific Research of University of Shanghai for Science and TechnologyBiography: PENG Dun-lu (1974-), male, Associate professor, Ph.D, research direction: data mining, Web service and its application, peerto-peer computing.
基金Supported by the National High Technology Research and Development Program of China (No. 2007AA01Z132) the National Natural Science Foundation of China (No.60775035, 60933004, 60970088, 60903141)+1 种基金 the National Basic Research Priorities Programme (No. 2007CB311004) the National Science and Technology Support Plan (No.2006BAC08B06).
文摘In this paper, we propose an enhanced associative classification method by integrating the dynamic property in the process of associative classification. In the proposed method, we employ a support vector machine(SVM) based method to refine the discovered emerging ~equent patterns for classification rule extension for class label prediction. The empirical study shows that our method can be used to classify increasing resources efficiently and effectively.
基金Acknowledgements: This work is supported by the National Natural Science Foundation of China (No. 60205007), Natural Science Foundation of Guangdong Province (No.031558, No. 04300462), Research Foundation of National Science and Technology Plan Project (No.2004BA721A02), Research Foundation of Science and Technology Plan Project in Guangdong Province (No.2003C50118), and Research Foundation of Science and Technology Plan Project in Guangzhou City (No.2002Z3-E0017).
文摘In this paper, we propose an efficient algorithm, called FFP-Growth (shortfor fast FP-Growth) , to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches theFP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees,thus, saving a substantial amount of time and space, and the FP-tree created by it is much smallerthan that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can beeasily extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimentalresults show that the algorithm of this paper is effective and efficient.
文摘传统周期模式挖掘忽略了模式本身的相关性和时效性,导致获取到一些实用价值有限的弱相关且时效性较低的模式。因此,提出了新颖的基于时效性和相关性约束的周期模式挖掘方法(correlation and recency periodic frequent pattern-breadth first search,CRPFP-BFS)和(correlation and recency periodic frequent pattern-depth first search,CRPFP-DFS)。将给定的数据库压缩到一个列式结构的列表CRPFP-List中,CRPFP-BFS和CRPFP-DFS分别采用广度优先和深度优先搜索方式递归地进行挖掘,同时利用支持度、周期、时效性以及相关性剪枝策略减少搜索空间,以有效地发现相关时效周期模式。与当前最先进算法在密集数据集和稀疏数据集上进行对比实验,结果表明CRPFP-BFS和CRPFP-DFS具有较低的内存占用和更高的运行效率,并且具有良好的可扩展性,其中CRPFP-DFS适合于内存要求严格的情况,CRPFP-BFS在长事务稀疏数据集下的运行效率更高。