A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic...A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.展开更多
频繁项集挖掘是数据挖掘中的一个基本问题,在许多数据挖掘应用中发挥着重要作用。针对并行频繁项集挖掘算法MrPrePost在大数据环境存在密集数据集下算法效率下降、计算节点负载量不均衡和冗余搜索等问题,提出了基于N-lists和DiffNodese...频繁项集挖掘是数据挖掘中的一个基本问题,在许多数据挖掘应用中发挥着重要作用。针对并行频繁项集挖掘算法MrPrePost在大数据环境存在密集数据集下算法效率下降、计算节点负载量不均衡和冗余搜索等问题,提出了基于N-lists和DiffNodeset两种结构的并行频繁项集挖掘算法(Parallel Mining algorithm of Frequent Itemset based on N-list and DiffNodeset structure,PFIMND)。首先,根据N-list和DiffNodeset在存储不同数据集上的优势,设计了稀疏度估计函数(Sparsity Estimation,SE),根据数据集稀疏程度灵活选取其中之一压缩数据集,相比采用单一存储结构消耗的内存更少;其次,提出了计算量估计函数(Computation Estimation,CE)来估计频繁1项集F-list中每一项的负载量,并根据计算量进行均匀分组;最后采用集合枚举树作为搜索空间,为避免组合爆炸和冗余搜索问题,设计了超集剪枝策略和基于宽度优先搜索的剪枝策略,生成最终的挖掘结果。实验结果表明,相比同类算法HP-FIMBN,PFIMND算法在Susy数据集上挖掘频繁项集的效果提升了12.3%。展开更多
Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidat...Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth.展开更多
由于传统的煤层气产能分析算法存在影响因素不够全面,运行效率低和人为设置聚类参数缺乏说服力的问题。因此,该文在煤层气产能分类的基础上,对分类结果进行回溯,挖掘煤层气产能影响因素的规律,将基于密度聚类算法(Density-Based Spatial...由于传统的煤层气产能分析算法存在影响因素不够全面,运行效率低和人为设置聚类参数缺乏说服力的问题。因此,该文在煤层气产能分类的基础上,对分类结果进行回溯,挖掘煤层气产能影响因素的规律,将基于密度聚类算法(Density-Based Spatial Clustering of Application with Noise,DBSCAN)与频繁模式增长算法(Frequent-Pattern Growth,FP-Growth)关联度分析算法优化结合,提出新的基于DBSCAN的FP-growth煤层气产能分析模型,找出影响煤层气产能的关键因素及其对应的参数范围。该文是深度学习与煤层气开发交叉学科的应用与研究,致力于煤层气产能分析评价体系的构建,为提高煤层气单井产气量,提升措施选井的决策效率有积极影响。展开更多
文摘A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.
文摘频繁项集挖掘是数据挖掘中的一个基本问题,在许多数据挖掘应用中发挥着重要作用。针对并行频繁项集挖掘算法MrPrePost在大数据环境存在密集数据集下算法效率下降、计算节点负载量不均衡和冗余搜索等问题,提出了基于N-lists和DiffNodeset两种结构的并行频繁项集挖掘算法(Parallel Mining algorithm of Frequent Itemset based on N-list and DiffNodeset structure,PFIMND)。首先,根据N-list和DiffNodeset在存储不同数据集上的优势,设计了稀疏度估计函数(Sparsity Estimation,SE),根据数据集稀疏程度灵活选取其中之一压缩数据集,相比采用单一存储结构消耗的内存更少;其次,提出了计算量估计函数(Computation Estimation,CE)来估计频繁1项集F-list中每一项的负载量,并根据计算量进行均匀分组;最后采用集合枚举树作为搜索空间,为避免组合爆炸和冗余搜索问题,设计了超集剪枝策略和基于宽度优先搜索的剪枝策略,生成最终的挖掘结果。实验结果表明,相比同类算法HP-FIMBN,PFIMND算法在Susy数据集上挖掘频繁项集的效果提升了12.3%。
基金theFundoftheNationalManagementBureauofTraditionalChineseMedicine(No .2 0 0 0 J P 5 4 )
文摘Mining frequent pattern in transaction database, time series databases, and many other kinds of databases have been studied popularly in data mining research. Most of the previous studies adopt Apriori like candidate set generation and test approach. However, candidate set generation is very costly. Han J. proposed a novel algorithm FP growth that could generate frequent pattern without candidate set. Based on the analysis of the algorithm FP growth, this paper proposes a concept of equivalent FP tree and proposes an improved algorithm, denoted as FP growth * , which is much faster in speed, and easy to realize. FP growth * adopts a modified structure of FP tree and header table, and only generates a header table in each recursive operation and projects the tree to the original FP tree. The two algorithms get the same frequent pattern set in the same transaction database, but the performance study on computer shows that the speed of the improved algorithm, FP growth * , is at least two times as fast as that of FP growth.
文摘由于传统的煤层气产能分析算法存在影响因素不够全面,运行效率低和人为设置聚类参数缺乏说服力的问题。因此,该文在煤层气产能分类的基础上,对分类结果进行回溯,挖掘煤层气产能影响因素的规律,将基于密度聚类算法(Density-Based Spatial Clustering of Application with Noise,DBSCAN)与频繁模式增长算法(Frequent-Pattern Growth,FP-Growth)关联度分析算法优化结合,提出新的基于DBSCAN的FP-growth煤层气产能分析模型,找出影响煤层气产能的关键因素及其对应的参数范围。该文是深度学习与煤层气开发交叉学科的应用与研究,致力于煤层气产能分析评价体系的构建,为提高煤层气单井产气量,提升措施选井的决策效率有积极影响。