提出一种矩阵加权关联模式支持度计算方法及其相关定理,给出矩阵加权项集剪枝策略,基于该剪枝策略提出一种基于项权值变化的矩阵加权关联规则挖掘算法MWAR-Miner(matrix-weighted association rules-miner)。该算法克服现有的项无加权...提出一种矩阵加权关联模式支持度计算方法及其相关定理,给出矩阵加权项集剪枝策略,基于该剪枝策略提出一种基于项权值变化的矩阵加权关联规则挖掘算法MWAR-Miner(matrix-weighted association rules-miner)。该算法克服现有的项无加权和项权值固定条件下挖掘关联规则的缺陷,采用新的剪枝技术和模式支持度计算方法挖掘有效的矩阵加权关联规则,避免无效的和无趣的模式产生。以中文数据集CWT200g和英文数据集NTCIR-5为实验数据,理论分析和实验结果表明,与现有矩阵加权模式挖掘算法和基于无加权的挖掘算法比较,该算法挖掘的候选项集数量和挖掘时间明显减少,挖掘效率得到极大提高。展开更多
完全加权正负关联模式在文本挖掘、信息检索等方面具有重要的理论和应用价值。针对现有挖掘算法的不足,构建完全加权正负关联模式评价框架SPRMII(support-probability ratio-mutual information-interest),提出完全加权项集双兴趣度阈...完全加权正负关联模式在文本挖掘、信息检索等方面具有重要的理论和应用价值。针对现有挖掘算法的不足,构建完全加权正负关联模式评价框架SPRMII(support-probability ratio-mutual information-interest),提出完全加权项集双兴趣度阈值剪枝策略,然后基于该剪枝策略提出一种新的基于SPRMII框架的完全加权正负关联模式挖掘算法AWAPM_SPRMII(all-weighted association patterns mining based on SPRMII)。该算法克服了传统挖掘算法缺陷并采用新剪枝方法从完全加权数据库中挖掘有趣的频繁项集和负项集,通过项集权重维数比的简单计算和SPRMII评价框架,从这些项集中挖掘有效的完全加权正负关联规则。理论分析和实验表明,该算法有效,具有良好的扩展性,与现有经典挖掘算法比较,获得了良好的挖掘性能。展开更多
为解决在挖掘频繁项集过程中,因忽略不同项目间的重要程度而导致的挖掘有效性低以及忽略数据的动态更新而造成的挖掘效率低的问题,通过引入新的加权规则,从权值与频数两方面去体现项目间的重要性差异,并通过引入树形结构与关系矩阵提高...为解决在挖掘频繁项集过程中,因忽略不同项目间的重要程度而导致的挖掘有效性低以及忽略数据的动态更新而造成的挖掘效率低的问题,通过引入新的加权规则,从权值与频数两方面去体现项目间的重要性差异,并通过引入树形结构与关系矩阵提高数据动态变化时频繁项集的挖掘效率。创新性地提出基于动态数据的加权频繁项集挖掘算法weighted dynamic date mining(WDDM)。实验结果表明,WDDM算法较以往算法挖掘效率与有效性显著提高,有利于发现更多有研究价值的信息。展开更多
文摘提出一种矩阵加权关联模式支持度计算方法及其相关定理,给出矩阵加权项集剪枝策略,基于该剪枝策略提出一种基于项权值变化的矩阵加权关联规则挖掘算法MWAR-Miner(matrix-weighted association rules-miner)。该算法克服现有的项无加权和项权值固定条件下挖掘关联规则的缺陷,采用新的剪枝技术和模式支持度计算方法挖掘有效的矩阵加权关联规则,避免无效的和无趣的模式产生。以中文数据集CWT200g和英文数据集NTCIR-5为实验数据,理论分析和实验结果表明,与现有矩阵加权模式挖掘算法和基于无加权的挖掘算法比较,该算法挖掘的候选项集数量和挖掘时间明显减少,挖掘效率得到极大提高。
文摘完全加权正负关联模式在文本挖掘、信息检索等方面具有重要的理论和应用价值。针对现有挖掘算法的不足,构建完全加权正负关联模式评价框架SPRMII(support-probability ratio-mutual information-interest),提出完全加权项集双兴趣度阈值剪枝策略,然后基于该剪枝策略提出一种新的基于SPRMII框架的完全加权正负关联模式挖掘算法AWAPM_SPRMII(all-weighted association patterns mining based on SPRMII)。该算法克服了传统挖掘算法缺陷并采用新剪枝方法从完全加权数据库中挖掘有趣的频繁项集和负项集,通过项集权重维数比的简单计算和SPRMII评价框架,从这些项集中挖掘有效的完全加权正负关联规则。理论分析和实验表明,该算法有效,具有良好的扩展性,与现有经典挖掘算法比较,获得了良好的挖掘性能。
文摘为解决在挖掘频繁项集过程中,因忽略不同项目间的重要程度而导致的挖掘有效性低以及忽略数据的动态更新而造成的挖掘效率低的问题,通过引入新的加权规则,从权值与频数两方面去体现项目间的重要性差异,并通过引入树形结构与关系矩阵提高数据动态变化时频繁项集的挖掘效率。创新性地提出基于动态数据的加权频繁项集挖掘算法weighted dynamic date mining(WDDM)。实验结果表明,WDDM算法较以往算法挖掘效率与有效性显著提高,有利于发现更多有研究价值的信息。