The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions...The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions at 0.20% (T1), 0.40% (T2) and 0.60% (T3), respectively. Grapes processed with water (CK3) and 1% chitosan (CK2) were taken as control groups. Rotten rate, seed shattering rate, mass loss rate, respiratory intensity and related physiological quality in test and control groups were compared. The results indicated that respiratory intensity, mass loss rate, rotten rate and seed shattering rate in CK1 were all higher than those in CK2. In addition, T1, T2 and T3 were lower in the indices than CK1 and CK2, but still kept at a high level in fruit hardness. Furthermore, mass fractions of Vc and titratable acid declined more slowly in T1, T2 and T3, compared with CK1 and CK2. Natamycin better preserved grapes and prolonged storage period. In general, natamycin with mass fraction at 0.4% proved best in fresh-keeping.展开更多
Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in...Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.展开更多
The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due t...The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended ...The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.展开更多
Cationic polymers such as polyethylenimine have been considered promising carriers for mRNA vaccines.However,their application is hindered by their inherent toxicity and a lack of targeted delivery capability.These is...Cationic polymers such as polyethylenimine have been considered promising carriers for mRNA vaccines.However,their application is hindered by their inherent toxicity and a lack of targeted delivery capability.These issues need to be addressed to develop effective cancer vaccines.In this study,we investigated whether dendritic cell membrane-coated polyethylenimine/mRNA nanoparticles(DPN)could effectively deliver mRNA to dendritic cells and induce immune responses.For comparison,we employed red blood cell membrane-coated polyethylenimine/mRNA(RPN)and plain polyethylenimine/mRNA polyplex(PN).The dendritic cell membrane coating altered the zeta potential values and surface protein patterns of PN.DPN demonstrated significantly higher uptake in dendritic cells compared to PN and RPN,and it also showed greater mRNA expression within these cells.DPN,carrying mRNA encoding luciferase,enhanced green fluorescent protein,or ovalbumin(OVA),exhibited higher protein expression in dendritic cells than the other groups.Additionally,DPN exhibited favorable mRNA escape from lysosomes post-internalization into dendritic cells.Inmice,subcutaneous administration of DPN containing ovalbumin mRNA(DPN_(OVA))elicited higher titers of anti-OVA IgG antibodies and a greater population of OVA-specific CD8^(+)T cells than the other groups.In a B16F10-OVA tumor model,DPNOVA treatment resulted in the lowest tumor growth among the treated groups.Moreover,the population of OVA-specific CD8^(+)T cellswas the highest in the DPNOVA-treated group.While we demonstrated DPN’s feasibility as an mRNA delivery system in a tumor model,the potential of DPN can be broadly extended for immunotherapeutic treatments of various diseases through mRNA delivery to antigen-presenting cells.展开更多
The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating r...The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.展开更多
We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and...We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.展开更多
Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further devel...Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.展开更多
The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previo...The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.展开更多
This research explores Microwave Plasma Chemical Vapor Deposition (MPCVD) for depositing diamond films on steel alloys (316L, 4140, and 1018) with a vanadium carbide interlayer to enhance adhesion and compatibility. T...This research explores Microwave Plasma Chemical Vapor Deposition (MPCVD) for depositing diamond films on steel alloys (316L, 4140, and 1018) with a vanadium carbide interlayer to enhance adhesion and compatibility. The study reveals that a soft vanadium carbide interlayer and the FCC lattice match lead to a Ta-C film. The results of the graphite inhibition and diamond deposition varied with the steel alloy underlayer composition. In the 316L steel alloy, we successfully formed a thick, compressive strain-induced, sp3-bonded tetrahedral amorphous carbon layer without graphite. The findings have wide-ranging applications in environments demanding high durability and thermal conductivity.展开更多
High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of th...High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
A novel coated urea(MVCU)was prepared,and its application effect was verified by field trials of oilseed rape in three main cultivation areas.Meanwhile,the nutrient release and coating layer changes of MVCU in static ...A novel coated urea(MVCU)was prepared,and its application effect was verified by field trials of oilseed rape in three main cultivation areas.Meanwhile,the nutrient release and coating layer changes of MVCU in static water at 25C and different soils were systematically evaluated.MVCU showed a long nutrient release time under static water(77 days)and soil incubation(140 days)conditions due to the slow degradation of the coating layer in MVCU,and its nitrogen release coincided well with oilseed rape nitrogen demand.The above results were further confirmed by FT-IR spectra and SEM analysis.Compared with conventional urea(U),the field trials of MVCU in the three main cultivation areas showed high nitrogen utilization efficiency and yield advantages in oilseed rape.The field trials results indicated that the MVCU significantly enhanced the aboveground dry matter(28.7%),the seed nitrogen concentration(9.5%)and aboveground nitrogen accumulation(42.5%)of oilseed rape at the mature stage as compared to that of the U.The oilseed rape yield enhanced by 932.8 kg/hm^(2),the average growth rate was 65.1%,and nitrogen utilization efficiency increased by 21.2%.In short,MVCU has the advantages of excellent slow-release performance and strong applicability,and its yield-increasing effect on oilseed rape could reach or even be better than that of traditional fertilization.展开更多
High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface...High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.展开更多
The effect of application of cellulose-based edible coating, hydroxypropyl methylcellulose (HPMC) to mature-green tomatoes on the firmness and color was investigated. Tomatoes were stored at 20℃ for up to 18 days. Fi...The effect of application of cellulose-based edible coating, hydroxypropyl methylcellulose (HPMC) to mature-green tomatoes on the firmness and color was investigated. Tomatoes were stored at 20℃ for up to 18 days. Firmness decreased as storage time increased in all treatments. However, application of HPMC edible coating delayed softening of tomatoes during 18 days of storage at 20℃ . At days 7, 13 and 18,the firmness of tomatoes coated with HPMC was significantly ( P ≤ 0.05) greater than the firmness of uncoated tomatoes. The study also confirmed that HPMC coatings could significantly (P≤0.05) delay the changes in color of tomatoes stored at 20℃ . The ripening of tomatoes from the pink stage to the red stage was successfully retarded. HPMC coating could extend the shelf life of fresh tomatoes. The retardation of the rate of loss of firmness could reduce the economic loss that would result from spoilage by mechanical injury during transportation of tomatoes.展开更多
The incidence of acute myocardial infarction (AMI) is increasing year by year, which seriously endangers human health around the world. The preferred treatment strategy for AMI patients is the use of drug-eluting sten...The incidence of acute myocardial infarction (AMI) is increasing year by year, which seriously endangers human health around the world. The preferred treatment strategy for AMI patients is the use of drug-eluting stents (DES), as there is ample evidence to suggest that stent implantation can reduce major adverse cardiovascular events (MACEs). With the application of drug-coated balloons (DCBs) and the enhancement of the concept of interventional without implantation, the question is whether DCBs can be safely and effectively used in patients with AMI? The purpose of this study was to investigate the safety and effectiveness of DCBs in the treatment of AMI. A retrospective review of clinical data was conducted on 55 AMI patients who underwent primary percutaneous coronary intervention (PCI) from January 2020 to December 2021. Of these patients, 25 were treated with DCBs and 30 were treated with DESs. Optical coherence tomography (OCT) was used to measure the minimum lumen diameter, lumen stenosis, and coronary artery dissection before and after surgery, and angina pectoris attacks and various MACEs were recorded at 1, 6, and 12 months after surgery. The results showed that there were no significant differences in clinical baseline data between the two groups. However, the minimum lumen diameter of the DCB group immediately after the operation was smaller than that of the DES group, and the stenosis degree of the lumen in the DCB group was higher than that in the DES group. The incidence of coronary artery dissection in the DCB group was significantly higher than that in the DES group, but the majority of them were type B. At 1, 6, and 12 months after treatment, there was no significant difference in the occurrence of MACEs between the two groups. In conclusion, DCBs is a safe and effective treatment for AMI. However, the incidence of coronary artery dissection in DCB patients is higher than that in DES patients, but the majority of them are type B. .展开更多
Objective: To discuss the actual effect of ilaprazole enteric-coated tablets in the treatment of peptic ulcer patients. Methods: 200 peptic ulcer patients who received treatment from January to December 2023 were sele...Objective: To discuss the actual effect of ilaprazole enteric-coated tablets in the treatment of peptic ulcer patients. Methods: 200 peptic ulcer patients who received treatment from January to December 2023 were selected as the study sample, and all patients were randomly and evenly divided into the study group (n = 100) and the control group (n = 100), and the serum inflammatory factors and the disappearance time of symptoms were compared. Results: After treatment, the serum inflammatory factors in the observation group were better than those in the control group, and the time of belching and burning sensation in the observation group was shorter than that in the control group, all of which were statistically significant (P Conclusion: Ilaprazole enteric-coated tablets in the treatment of peptic ulcer have a good effect and can effectively improve the symptoms of patients with clinical signs, with reference significance.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
文摘The aim was to research fresh-keeping effects of natamycin on cold-pre- served grape. Red globe grapes were processed with compound coating liquid of chitosan with mass fraction at 1% and natamycin with mass fractions at 0.20% (T1), 0.40% (T2) and 0.60% (T3), respectively. Grapes processed with water (CK3) and 1% chitosan (CK2) were taken as control groups. Rotten rate, seed shattering rate, mass loss rate, respiratory intensity and related physiological quality in test and control groups were compared. The results indicated that respiratory intensity, mass loss rate, rotten rate and seed shattering rate in CK1 were all higher than those in CK2. In addition, T1, T2 and T3 were lower in the indices than CK1 and CK2, but still kept at a high level in fruit hardness. Furthermore, mass fractions of Vc and titratable acid declined more slowly in T1, T2 and T3, compared with CK1 and CK2. Natamycin better preserved grapes and prolonged storage period. In general, natamycin with mass fraction at 0.4% proved best in fresh-keeping.
基金This research was supported by the Twinning service plan of the Zhejiang Provincial Team Science and the Science and Technology Develpoment project of Hangzhou(202003A02).
文摘Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.
基金supported by the National Natural Science Foundation of China(Grant No.22275092)。
文摘The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
基金financially supported by Joint Foundation of Ministry of Education of China(No.8091B022225)National Natural Science Foundation of China(No.52173078)。
文摘The presence of iron(Fe) has been found to favor power generation in microbial fuel cells(MFCs). To achieve long-term power production in MFCs, it is crucial to effectively tailor the release of Fe ions over extended operating periods. In this study, we developed a composite anode(A/IF) by coating iron foam with cellulose-based aerogel. The concentration of Fe ions in the anode solution of A/IF anode reaches 0.280 μg/mL(Fe^(2+) vs. Fe^(3+) = 61%:39%) after 720 h of aseptic primary cell operation. This value was significantly higher than that(0.198 μg/mL, Fe^(2+) vs. Fe^(3+) = 92%:8%) on uncoated iron foam(IF), indicating a continuous release of Fe ions over long-term operation. Notably, the resulting MFCs hybrid cell exhibited a 23% reduction in Fe ion concentration(compared to a 47% reduction for the IF anode) during the sixth testing cycle(600-720 h). It achieved a high-power density of 301 ± 55 mW/m^(2) at 720 h, which was 2.62 times higher than that of the IF anode during the same period. Furthermore, a sedimentary microbial fuel cell(SMFCs) was constructed in a marine environment, and the A/IF anode demonstrated a power density of 103 ± 3 mW/m^(2) at 3240 h, representing a 75% improvement over the IF anode. These findings elucidate the significant enhancement in long-term power production performance of MFCs achieved through effective tailoring of Fe ions release during operation.
基金This research was funded by grants from the National Research Foundation(NRF)of Korea,Ministry of Science and ICT,Republic of Korea(NRF-2021R1A2B5B03002123,NRF-2018R1A5A2024425,NRF-2022M3E5F1017919)from the Alchemist Project of the Korea Evaluation Institute of Industrial Technology(KEIT 20018560,NTIS 1415184668)the Ministry of Trade,Industry&Energy,Republic of Korea.
文摘Cationic polymers such as polyethylenimine have been considered promising carriers for mRNA vaccines.However,their application is hindered by their inherent toxicity and a lack of targeted delivery capability.These issues need to be addressed to develop effective cancer vaccines.In this study,we investigated whether dendritic cell membrane-coated polyethylenimine/mRNA nanoparticles(DPN)could effectively deliver mRNA to dendritic cells and induce immune responses.For comparison,we employed red blood cell membrane-coated polyethylenimine/mRNA(RPN)and plain polyethylenimine/mRNA polyplex(PN).The dendritic cell membrane coating altered the zeta potential values and surface protein patterns of PN.DPN demonstrated significantly higher uptake in dendritic cells compared to PN and RPN,and it also showed greater mRNA expression within these cells.DPN,carrying mRNA encoding luciferase,enhanced green fluorescent protein,or ovalbumin(OVA),exhibited higher protein expression in dendritic cells than the other groups.Additionally,DPN exhibited favorable mRNA escape from lysosomes post-internalization into dendritic cells.Inmice,subcutaneous administration of DPN containing ovalbumin mRNA(DPN_(OVA))elicited higher titers of anti-OVA IgG antibodies and a greater population of OVA-specific CD8^(+)T cells than the other groups.In a B16F10-OVA tumor model,DPNOVA treatment resulted in the lowest tumor growth among the treated groups.Moreover,the population of OVA-specific CD8^(+)T cellswas the highest in the DPNOVA-treated group.While we demonstrated DPN’s feasibility as an mRNA delivery system in a tumor model,the potential of DPN can be broadly extended for immunotherapeutic treatments of various diseases through mRNA delivery to antigen-presenting cells.
文摘The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.
基金supported by the National Natural Science Foundation of China(11571132,12301542)the Natural Science Foundation of Hubei(2022CFB725)the Natural Science Foundation of Yichang(A23-2-027)。
文摘We consider the interior transmission eigenvalue problem corresponding to the scattering for an anisotropic medium of the scalar Helmholtz equation in the case where the boundary?Ωis split into two disjoint parts and possesses different transmission conditions.Using the variational method,we obtain the well posedness of the interior transmission problem,which plays an important role in the proof of the discreteness of eigenvalues.Then we achieve the existence of an infinite discrete set of transmission eigenvalues provided that n≡1,where a fourth order differential operator is applied.In the case of n■1,we show the discreteness of the transmission eigenvalues under restrictive assumptions by the analytic Fredholm theory and the T-coercive method.
基金supported by the National Natural Science Foundation of China (Grant Nos.21573109,21206069)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.
基金the financial support of the FUNCOAT project(Development and design of novel multifunctional PEO COATings,H2020-RISE-2019-2024,No.823942)the I2B funding in frame MUFfin projectACTICOAT project in frame of Era。
文摘The need to combine various metals in light-weight constructions requires the development of coatings that prevent galvanic corrosion.Layered double hydroxides(LDHs)can be an example of such coatings,which were previously successfully obtained in situ on individual materials.In addition,the possibility of LDH growth(including LDH growth in the presence of chelating agents)on the surface of plasma electrolytic oxidation(PEO)-coated metals was previously shown.This PEO+LDH combination could improve both corrosion and mechanical characteristics of the system.The possibility of LDHs formation in situ on the surface of PEO-coated friction stir welded(FSW)magnesium-aluminum materials(AZ31/AA5754 system was selected as a model one)was demonstrated in the presence of 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid(DHPTA)as a chelating agent,which was selected based on analysis of respective metal-ligand compounds stability.LDHs growth was achieved under ambient pressure without addition of carbonates in the electrolyte.The effectiveness of the resulting coating is shown both for corrosion resistance and hardness.
文摘This research explores Microwave Plasma Chemical Vapor Deposition (MPCVD) for depositing diamond films on steel alloys (316L, 4140, and 1018) with a vanadium carbide interlayer to enhance adhesion and compatibility. The study reveals that a soft vanadium carbide interlayer and the FCC lattice match lead to a Ta-C film. The results of the graphite inhibition and diamond deposition varied with the steel alloy underlayer composition. In the 316L steel alloy, we successfully formed a thick, compressive strain-induced, sp3-bonded tetrahedral amorphous carbon layer without graphite. The findings have wide-ranging applications in environments demanding high durability and thermal conductivity.
基金Project supported by the National Natural Science Foundation of China(Nos.12302278,U2241267,12172155,and 11932008)the Fundamental Research Funds for the Central Universities of China(No.lzujbky-2022-48)the Natural Science Foundation of Gansu Province of China(No.24JRRA473)。
文摘High-temperature superconducting(HTS)rare-earth Ba_(2)Cu_(3)O_(7-x)(REBCO)coated conductors(CCs)have significant potential in high-current and high-field applications.However,owing to the weak interface strength of the laminated composite REBCO CCs,the damage induced by the thermal mismatch stress under a combination of epoxy impregnation,cooling,and quenching can cause premature degradation of the critical current.In this study,a three-dimensional(3D)electromagnetic-thermal-mechanical model based on the H-formulation and cohesive zone model(CZM)is developed to study the critical current degradation characteristics in an epoxy-impregnated REBCO CC caused by the damage during a quench.The temperature variation,critical current degradation of the REBCO CC,and its degradation onset temperature calculated by the numerical model are in agreement with the experimental data taken from the literature.The delamination of the REBCO CC predicted by the numerical model is consistent with the experimental result.The numerical results also indicate that the shear stress is the main contributor to the damage propagation inside the REBCO CC.The premature degradation of the critical current during a quench is closely related to the interface shear strength inside the REBCO CC.Finally,the effects of the coefficient of thermal expansion(CTE)of the epoxy resin,thickness of the substrate,and substrate material on the critical current degradation characteristics of the epoxy-impregnated REBCO CC during a quench are also discussed.These results help us understand the relationship between the current-carrying degradation and damage in the HTS applications.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金financial support was provided by the National Key R&D Program of China(2018YFD0200901).
文摘A novel coated urea(MVCU)was prepared,and its application effect was verified by field trials of oilseed rape in three main cultivation areas.Meanwhile,the nutrient release and coating layer changes of MVCU in static water at 25C and different soils were systematically evaluated.MVCU showed a long nutrient release time under static water(77 days)and soil incubation(140 days)conditions due to the slow degradation of the coating layer in MVCU,and its nitrogen release coincided well with oilseed rape nitrogen demand.The above results were further confirmed by FT-IR spectra and SEM analysis.Compared with conventional urea(U),the field trials of MVCU in the three main cultivation areas showed high nitrogen utilization efficiency and yield advantages in oilseed rape.The field trials results indicated that the MVCU significantly enhanced the aboveground dry matter(28.7%),the seed nitrogen concentration(9.5%)and aboveground nitrogen accumulation(42.5%)of oilseed rape at the mature stage as compared to that of the U.The oilseed rape yield enhanced by 932.8 kg/hm^(2),the average growth rate was 65.1%,and nitrogen utilization efficiency increased by 21.2%.In short,MVCU has the advantages of excellent slow-release performance and strong applicability,and its yield-increasing effect on oilseed rape could reach or even be better than that of traditional fertilization.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2503900)the National Natural Science Foundation of China(Grant No.52372203)+1 种基金the National Natural Science Foundation of China(Grant No.52202259)the Shandong Province Natural Science Foundation(ZR2022QE093).
文摘High-capacity nickel-rich layered oxides are promising cathode materials for high-energy-density lithium batteries.However,the poor structural stability and severe side reactions at the electrode/electrolyte interface result in unsatisfactory cycle performance.Herein,the thin layer of two-dimensional(2D)graphitic carbon-nitride(g-C_(3)N_(4))is uniformly coated on the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(denoted as NCM811@CN)using a facile chemical vaporization-assisted synthesis method.As an ideal protective layer,the g-C_(3)N_(4)layer effectively avoids direct contact between the NCM811 cathode and the electrolyte,preventing harmful side reactions and inhibiting secondary crystal cracking.Moreover,the unique nanopore structure and abundant nitrogen vacancy edges in g-C_(3)N_(4)facilitate the adsorption and diffusion of lithium ions,which enhances the lithium deintercalation/intercalation kinetics of the NCM811 cathode.As a result,the NCM811@CN-3wt%cathode exhibits 161.3 mAh g^(−1)and capacity retention of 84.6%at 0.5 C and 55°C after 400 cycles and 95.7 mAh g^(−1)at 10 C,which is greatly superior to the uncoated NCM811(i.e.129.3 mAh g^(−1)and capacity retention of 67.4%at 0.5 C and 55°C after 220 cycles and 28.8 mAh g^(−1)at 10 C).The improved cycle performance of the NCM811@CN-3wt%cathode is also applicable to solid–liquid-hybrid cells composed of PVDF:LLZTO electrolyte membranes,which show 163.8 mAh g^(−1)and the capacity retention of 88.1%at 0.1 C and 30°C after 200 cycles and 95.3 mAh g^(−1)at 1 C.
文摘The effect of application of cellulose-based edible coating, hydroxypropyl methylcellulose (HPMC) to mature-green tomatoes on the firmness and color was investigated. Tomatoes were stored at 20℃ for up to 18 days. Firmness decreased as storage time increased in all treatments. However, application of HPMC edible coating delayed softening of tomatoes during 18 days of storage at 20℃ . At days 7, 13 and 18,the firmness of tomatoes coated with HPMC was significantly ( P ≤ 0.05) greater than the firmness of uncoated tomatoes. The study also confirmed that HPMC coatings could significantly (P≤0.05) delay the changes in color of tomatoes stored at 20℃ . The ripening of tomatoes from the pink stage to the red stage was successfully retarded. HPMC coating could extend the shelf life of fresh tomatoes. The retardation of the rate of loss of firmness could reduce the economic loss that would result from spoilage by mechanical injury during transportation of tomatoes.
文摘The incidence of acute myocardial infarction (AMI) is increasing year by year, which seriously endangers human health around the world. The preferred treatment strategy for AMI patients is the use of drug-eluting stents (DES), as there is ample evidence to suggest that stent implantation can reduce major adverse cardiovascular events (MACEs). With the application of drug-coated balloons (DCBs) and the enhancement of the concept of interventional without implantation, the question is whether DCBs can be safely and effectively used in patients with AMI? The purpose of this study was to investigate the safety and effectiveness of DCBs in the treatment of AMI. A retrospective review of clinical data was conducted on 55 AMI patients who underwent primary percutaneous coronary intervention (PCI) from January 2020 to December 2021. Of these patients, 25 were treated with DCBs and 30 were treated with DESs. Optical coherence tomography (OCT) was used to measure the minimum lumen diameter, lumen stenosis, and coronary artery dissection before and after surgery, and angina pectoris attacks and various MACEs were recorded at 1, 6, and 12 months after surgery. The results showed that there were no significant differences in clinical baseline data between the two groups. However, the minimum lumen diameter of the DCB group immediately after the operation was smaller than that of the DES group, and the stenosis degree of the lumen in the DCB group was higher than that in the DES group. The incidence of coronary artery dissection in the DCB group was significantly higher than that in the DES group, but the majority of them were type B. At 1, 6, and 12 months after treatment, there was no significant difference in the occurrence of MACEs between the two groups. In conclusion, DCBs is a safe and effective treatment for AMI. However, the incidence of coronary artery dissection in DCB patients is higher than that in DES patients, but the majority of them are type B. .
文摘Objective: To discuss the actual effect of ilaprazole enteric-coated tablets in the treatment of peptic ulcer patients. Methods: 200 peptic ulcer patients who received treatment from January to December 2023 were selected as the study sample, and all patients were randomly and evenly divided into the study group (n = 100) and the control group (n = 100), and the serum inflammatory factors and the disappearance time of symptoms were compared. Results: After treatment, the serum inflammatory factors in the observation group were better than those in the control group, and the time of belching and burning sensation in the observation group was shorter than that in the control group, all of which were statistically significant (P Conclusion: Ilaprazole enteric-coated tablets in the treatment of peptic ulcer have a good effect and can effectively improve the symptoms of patients with clinical signs, with reference significance.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.