The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC ...The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.展开更多
The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical ...The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump.In previous study,the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear.This paper is based on the establishment of the statically indeterminate structure of the unloading valve.The micro friction parameters(stress,friction coefficient,etc.)required for the numerical iterative calculation of fretting wear are calculated.In addition,based on the grid adaptive technology and a modified Archard wear model,the fretting wear is calculated quantitatively and is in good agreement with experimental results.Based on that verification,the wear laws of the valve ball and valve seat under the same hardness,different contact angles,and different assembly stresses,are analyzed in detail,and reasoned suggestions for the structural design and assembly design of the ball valve are given.展开更多
文摘The tribology behaviors of Ti6Al7Nb,its alloy with N-ion implantation,and its alloy with diamond-like carbon(DLC)coating were investigated in artificial saliva.Fretting wear tests of untreated,N-ion implanted and DLC coated Ti6Al7Nb alloys plate against a Si3N4ball were carried out on a reciprocating sliding fretting wear test rig.Based on the analysis of X-ray diffraction,Raman spectroscopy,3-D profiler,SEM morphologies and frictional kinetics behavior analysis,the damage behavior of surface modification layer was discussed in detail.The results indicated that the fretting wear behavior of Ti6Al7Nb alloy with N-ion implantation was increased with the dose increase of the implanted nitrogen ions.Moreover,the DLC-coated Ti6Al7Nb alloy with low ion implantation could improve the fretting wear behavior greatly.In addition,the Ti6Al7Nb with DLC coating had better ncorrosion resistance due to the special compact structure.All results suggested that the Ti6Al7Nb with DLC coating had better wear resistance than that with N-ion implantation in artificial saliva.
基金supported by the National Key R&D Program of China(No.2019YFB2001502)the National Natural Science Foundation of China(No.52075387)+2 种基金the Open Foundation of the State Key Laboratory of Fluid Power&Mechatronic Systems(No.GZKF-201907)the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)the Shanghai Municipal Commission of Science and Technology Project(No.19511132101),China。
文摘The high pressures in gasoline direct injection technology lead to structural damage in some hydraulic components,especially annular damage on the contact area of the valve ball and on the valve seat of the spherical unloading valve in the high-pressure pump.In previous study,the authors have analyzed the damage on the unloading valve and demonstrated that it is caused neither by static damage nor fatigue damage and have put forward the hypothesis of fretting wear.This paper is based on the establishment of the statically indeterminate structure of the unloading valve.The micro friction parameters(stress,friction coefficient,etc.)required for the numerical iterative calculation of fretting wear are calculated.In addition,based on the grid adaptive technology and a modified Archard wear model,the fretting wear is calculated quantitatively and is in good agreement with experimental results.Based on that verification,the wear laws of the valve ball and valve seat under the same hardness,different contact angles,and different assembly stresses,are analyzed in detail,and reasoned suggestions for the structural design and assembly design of the ball valve are given.