Ventilation system analysis for underground mines has remained mostly unchanged since the Atkinson method was made popular by Mc Elroy in 1935. Data available to ventilation technicians and engineers is typically limi...Ventilation system analysis for underground mines has remained mostly unchanged since the Atkinson method was made popular by Mc Elroy in 1935. Data available to ventilation technicians and engineers is typically limited to the quantity of air moving through any given heading. Because computer-aided modelling, simulation, and ventilation system design tools have improved, it is now important to ensure that developed models have the most accurate information possible. This paper presents a new technique for estimating underground drift friction factors that works by processing 3 D point cloud data obtained by using a mobile Li DAR. Presented are field results that compare the proposed approach with previously published algorithms, as well as with manually acquired measurements.展开更多
Gas-liquid two-phase flow occurs increasingly in some dynamic devices operating in the oceanic condition. The relative data are limited with respect to flow characteristics, so the present study is to investigate syst...Gas-liquid two-phase flow occurs increasingly in some dynamic devices operating in the oceanic condition. The relative data are limited with respect to flow characteristics, so the present study is to investigate systematically single-phase pressure drop, and to develop the theory for frictional factor under the roiling condition. Using deionized water as the test fluid, a series of experiments of single-phase flow were conducted in pipe with the inner diameter of 34.5 ram. The test section was horizontally settled on the rolling apparatus, and its regularity was similar to simple harmonic motion. It is found that the pressure drop during rolling motion fluctuate with the change of the rolling period and rolling angle, which is significantly different from fluid motion in a steady state. By the contrast between experiment results and stable-state theory values, existing correlations can not predict present frictional factor very well. Therefore, in the present article, the single-phase frictional factor is correlated with the Reynolds number for rolling motion, and its computated results agree well with experimental data.展开更多
The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number s...The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000.It is found that in such conditions the‘Nusselt Number’(Nu)gradually increases with reducing the tape twist ratio,whereas the friction factor is detrimentally affected by the presence of the tape(as witnessed by the comparison with the companion case where a plain tube is considered).In particular,it is shown that the heat transfer efficiency can be improved by nearly 69%if tape inserts with a relatively low twist ratio are used.On the basis of these findings,it is concluded that loose fit tape inserts are superior to tight fit tapes in terms of heat transfer and ease of replacement.展开更多
The thermo-hydraulic properties of circular tubes with a twisted tape inside(used accordingly to induce turbulence and enhance heat transfer through the tube wall)are described for Reynolds Numbers ranging from 830 to...The thermo-hydraulic properties of circular tubes with a twisted tape inside(used accordingly to induce turbulence and enhance heat transfer through the tube wall)are described for Reynolds Numbers ranging from 830 to 1990.Tapes twisted with the three distinct twist ratios are considered,namely,6,4.4 and 3.Air is used as the working fluid in several tests.For the sake of comparison,the standard tube with no insert is also examined.It is shown that in the presence of the twisted tape,the‘frictional factor’,‘Nusselt Number’and the‘thermal performance factor’are much higher than those obtained for the plain tube.Moreover,the tapes having the lowest twist ratio,i.e.,3,are more effective than the others in terms of heat transfer augmentation.The‘thermal performance factor’is greater than one for all the twisted tapes used in the experiments,which confirms the enhanced performances of the heat exchanger and the related savings in terms of total energy.展开更多
The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the ...The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the tube were explored experimentally,and water was employed as the working fluid.The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach.In the turbulent regime,six cross-sectionedwire coilswere analyzed,including:circular,rectangular,hexagonal,square,star shape,and triangle.The utilization of a tube with a wire coil has been shown to increase heat transfer rate and pump consumption.The results indicate a high level of concurrence,as the deviations are all below 8%.Compared with plain tube,the wire coils,according to the arrangement(TWD),gave the best PEC.The heat transfer enhancement ability of different cross sections follows the following order:StCS>RCS>HCS>SqCS>CCS>TCS.Also,the sequence of pump consumption for each cross section is as follows:RCS>StCS>SqCS>HCS>CCS>TCS.展开更多
Channel flows of Plate Heat Exchangers (PHEs) were assessed by experiments with three different chevron angle arrangements in turbulent regime. Two chevron angles were selected to assess low and high pressure drop cha...Channel flows of Plate Heat Exchangers (PHEs) were assessed by experiments with three different chevron angle arrangements in turbulent regime. Two chevron angles were selected to assess low and high pressure drop channels, besides a third mixed configuration as to achieve in-between results regarding hydraulic performance. Friction factor correlations were provided with the channel Reynolds number ranging from 1175 to 8325. Two-dimensional (2D) mean velocity field was obtained by Particle Tracking Velocimetry (PTV) with Reynolds number equal to 3450. To the best of our knowledge, this is the first experimental study that quantified the complete 2D velocity field of a typical PHE channel. This value allowed comparison with literature results of Plate and Shell Heat Exchanger (PSHE) channels with the same Reynolds number. PSHE mean velocity field is highly heterogeneous as compared to the one obtained for PHE channels. Peak velocity magnitude in the PSHE center is 50% higher than its bulk velocity, whereas this value is only 15% higher in the PHE center. Pressure drop in PHE mixed channels cannot be approximated by averaging chevron angles: furrow flow prevailed in the specified conditions. The axial velocity is asymmetric regarding the vertical plane. Smooth streamlines prevail in the channel inlet. Recirculation zones at the channel exit affect pipe flow in the manifold outlet with swirling flow structures. The necessary length to obtain fully developed pipe flow at the channel outlet was estimated. Significant velocity components occur in the distribution areas and can limit the heat exchanger performance. The results reported herein are essential to understand how the PHE channel geometry affects the velocity field and, therefore, local heat transfer and dissipation processes.展开更多
Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enh...Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.展开更多
This paper deals with the experimental investigation on Nusselt number,friction factor and thermal en-hancement factor of a double pipe heat exchanger equipped with twisted tape consisting wire nails(WN-TT) and plain ...This paper deals with the experimental investigation on Nusselt number,friction factor and thermal en-hancement factor of a double pipe heat exchanger equipped with twisted tape consisting wire nails(WN-TT) and plain twisted tapes(P-TT) with three different twist ratios of y 2.0,4.4 and 6.0. Test runs are conducted using the water as the working fluid with Reynolds number range between 2000 and 12000 for WN-TT and P-TT. It is found that Nusselt number,friction factor and thermal enhancement factor in the tube equipped with WN-TT appreciably higher than those in the tube fitted with P-TT and plain tube. Over the range considered Nusselt number,friction factor and thermal enhancement factor in a tube with WN-TT are respectively,1.08 to 1.31,1.1 to 1.75 and 1.05 to 1.13 times of those in tube with P-TT. The better performance of WN-TT is due to combined effects of the follow-ing factors:(1) common swirling flow generated by P-TT,(2) additional turbulence offered by the wire nails. Em-pirical correlations for Nusselt number,friction factor and thermal enhancement factor are also formulated from the experimental results of WN-TT and P-TT.展开更多
The single-phase pressure drop and heat transfer in a rotor-assembled strand inserted tube were measured using water as the working fluid.Experiment using a smooth tube was carried out to calibrate the experimental sy...The single-phase pressure drop and heat transfer in a rotor-assembled strand inserted tube were measured using water as the working fluid.Experiment using a smooth tube was carried out to calibrate the experimental system and the data reduction method.In the experiment,fixed mounts were used to eliminate the entrance effect. The experimental results of smooth tube show that employment of fixed mounts leads to a visible bias of friction factor at relative low Reynolds numbers,although it does not significantly affect the Nusselt numbers.The measured data of inserted tube reveal that rotor-assembled strand can significantly improve heat transfer with the Nusselt number increased by 101.6%-106.6%and the overall heat transfer coefficient increased by 58.1%-67.4%within the Reynolds number range of 20000 to 36000.Meanwhile,friction factor increases by 52.2%-84.2%within the same Reynolds number range.The correlations of Nusselt number and friction factor as function of the Reynolds number and Prandtl number were determined through multivariant linear normal regression.展开更多
The Atkinson equation along with its friction factor is commonly used to estimate pressure requirement in mine ventilation.However,friction factor correlation of flow through broken rock,typically found in blasted sto...The Atkinson equation along with its friction factor is commonly used to estimate pressure requirement in mine ventilation.However,friction factor correlation of flow through broken rock,typically found in blasted stope,gob,rock pit or block caving rock deposits,etc.,is currently unavailable.Also,it is impractical to conduct direct measurements of flow resistance in an inaccessible broken rock zone.This paper aims to develop a new friction factor correlation of flow through broken rock that can be used directly in Atkinson equation.The proposed correlation is valid for broken rocks with diameter between 0.04 and 1.2 m and porosity ranging from 0.23 to 0.7.展开更多
The paper described experimental investigation of heat transfer and single-phase pressure drop through tubes with different rotor-assembled strands inserted in the Reynolds number range of 800-9000 with lubricant as w...The paper described experimental investigation of heat transfer and single-phase pressure drop through tubes with different rotor-assembled strands inserted in the Reynolds number range of 800-9000 with lubricant as working fluid. In the experiment, fixed mounts were employed to eliminate the entrance effect. The experimental results showed that the employment of fixed mounts led to a visible bias of friction factor in the laminar regime while it could not affect the Nusselt numbers significantly. Experiment for the tube inserted with rotors-assembled strand showed remarkable improvement for heat transfer with the Nusselt number increased by 200%-225% in the laminar regime and 125%-160% in the transitional regime. Meanwhile, the friction factor increased inevitably by 200%-300% within the same range of Reynolds number. The comparison of different rotor-assembled strands in-serted tubes and plain tube showed that the heat transfer benefited from the increase of the diameter of rotor-assembled strand with the same lead and the decrease of the lead of rotor-assembled strand, so does the friction factor. Based on experimental data and thorough multivariant linear normal regression method, the correlations of average Nusselt number and friction factor are established.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. Several alternative explicit models to the Colebrook equation have been proposed. To dat...The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. Several alternative explicit models to the Colebrook equation have been proposed. To date, most of the accurate explicit models have been those with three logarithmic functions, but they require more computational time than the Colebrook equation. In this study, a new explicit non-linear regression model which has only two logarithmic functions is developed. The new model, when compared with the existing extremely accurate models, gives rise to the least average and maximum relative errors of 0.0025% and 0.0664%, respectively. Moreover, it requires far less computational time than the Colebrook equation. It is therefore concluded that the new explicit model provides a good trade-off between accuracy and relative computational efficiency for pipe friction factor estimation in the fully developed turbulent flow regime.展开更多
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Var...Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.展开更多
X-ray diffraction (XRD), ball-disc friction and wearing machine and draw-bead test were introduced to investigat the strcusture and workability of IF sheet steel electrogalvanized deposits prepared from sulphate solut...X-ray diffraction (XRD), ball-disc friction and wearing machine and draw-bead test were introduced to investigat the strcusture and workability of IF sheet steel electrogalvanized deposits prepared from sulphate solution system. It was shown that the picking-up of the zinc coating on die strengthened with the increasing of friction factor which was originally affected by the coating's structure. Duing forming, (00X) planes (X= 2, 4) preferential orientation of zinc deposits increased, which resulted in enhanc ing the coating's friction behaviors. Therefore, the forming mechanism of electrogalvedzed deposit was demonstrated that both friction and the stricking -up behaviors of the coating are intensified simultaneously and affect each other.展开更多
Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approac...Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime.展开更多
New lubricants use nanoparticles like WS2 to improve lubrication performance.The aim of the present study is to determine numerically the skin friction of nanofluid on moving surfaces in a lubricating system.The base ...New lubricants use nanoparticles like WS2 to improve lubrication performance.The aim of the present study is to determine numerically the skin friction of nanofluid on moving surfaces in a lubricating system.The base fluid is 5W-30 engine oil and the nano-additive is WS2 nanoparticles.This numerical study is based on the multiple-relaxation-time Lattice Boltzmann method(MRT-LBM).The two-dimensional nine-velocity(D2Q9)model is adopted to simulate the nanofluid flow confined by two moving surfaces.The parameters considered are the nanoparticle concentrationand the flow Reynolds number Re.The results obtained show a reduction of skin friction factor when we increase the nanoparticle concentration.展开更多
Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three...Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three channels with widths of 0.5 mm, 1.0 mm, 1.71 mm, a depth of 0.39 mm and a length of 62 mm were tested. For adiabatic tests, the temperature of the working fluid was maintained at 30 ℃, 60 ℃ and 90 ℃ without any heat fluxes supplied to the test section. The experimental conditions covered a range of Reynolds numbers from 234 to 3,430. For non-adiabatic tests, the inlet temperature and heat flux applied were 30 ℃ and 147 kW/m2 and only for the 0.635 mm channel. The friction factors obtained for the widest channel (Dh = 0.635 mm) are reported for both adiabatic and non-adiabatic experiments to assess possible temperature effects. The paper focuses on the effect of hydraulic diameter on pressure drop and friction factor over the experimental conditions. The pressure drop was found to decrease as the inlet temperature was increased, while the friction factors for the three test sections did not show significant differences. The experimental friction factors were in reasonable agreement with conventional developing flow theory. The effect of temperature on friction factor was not considerable as the friction factor with and without heat flux was almost the same.展开更多
The ongoing research for model choice and selection has generated a plethora of approaches. With such a wealth of methods, it can be difficult for a researcher to know what model selection approach is the proper w...The ongoing research for model choice and selection has generated a plethora of approaches. With such a wealth of methods, it can be difficult for a researcher to know what model selection approach is the proper way to proceed to select the appropriate model for prediction. The authors present an evaluation of various model selection criteria from decision-theoretic perspective using experimental data to define and recommend a criterion to select the best model. In this analysis, six of the most common selection criteria, nineteen friction factor correlations, and eight sets of experimental data are employed. The results show that while the use of the traditional correlation coefficient, R2 is inappropriate, root mean square error, RMSE can be used to rank models, but does not give much insight on their accuracy. Other criteria such as correlation ratio, mean absolute error, and standard deviation are also evaluated. The AIC (Akaike Information Criterion) has shown its superiority to other selection criteria. The authors propose AIC as an alternative to use when fitting experimental data or evaluating existing correlations. Indeed, the AIC method is an information theory based, theoretically sound and stable. The paper presents a detailed discussion of the model selection criteria, their pros and cons, and how they can be utilized to allow proper comparison of different models for the best model to be inferred based on sound mathematical theory. In conclusion, model selection is an interesting problem and an innovative strategy to help alleviate similar challenges faced by the professionals in the oil and gas industry is introduced.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under grant CRDPJ 44580412Barrick Gold Corporation and Peck Tech Consulting Ltd
文摘Ventilation system analysis for underground mines has remained mostly unchanged since the Atkinson method was made popular by Mc Elroy in 1935. Data available to ventilation technicians and engineers is typically limited to the quantity of air moving through any given heading. Because computer-aided modelling, simulation, and ventilation system design tools have improved, it is now important to ensure that developed models have the most accurate information possible. This paper presents a new technique for estimating underground drift friction factors that works by processing 3 D point cloud data obtained by using a mobile Li DAR. Presented are field results that compare the proposed approach with previously published algorithms, as well as with manually acquired measurements.
基金supported by the National Natural Science Foundation of China (Grant No.50376012)supported by the Scientific Research Foundation of Harbin Engineering University (Grant No.HEUFT07066)
文摘Gas-liquid two-phase flow occurs increasingly in some dynamic devices operating in the oceanic condition. The relative data are limited with respect to flow characteristics, so the present study is to investigate systematically single-phase pressure drop, and to develop the theory for frictional factor under the roiling condition. Using deionized water as the test fluid, a series of experiments of single-phase flow were conducted in pipe with the inner diameter of 34.5 ram. The test section was horizontally settled on the rolling apparatus, and its regularity was similar to simple harmonic motion. It is found that the pressure drop during rolling motion fluctuate with the change of the rolling period and rolling angle, which is significantly different from fluid motion in a steady state. By the contrast between experiment results and stable-state theory values, existing correlations can not predict present frictional factor very well. Therefore, in the present article, the single-phase frictional factor is correlated with the Reynolds number for rolling motion, and its computated results agree well with experimental data.
文摘The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000.It is found that in such conditions the‘Nusselt Number’(Nu)gradually increases with reducing the tape twist ratio,whereas the friction factor is detrimentally affected by the presence of the tape(as witnessed by the comparison with the companion case where a plain tube is considered).In particular,it is shown that the heat transfer efficiency can be improved by nearly 69%if tape inserts with a relatively low twist ratio are used.On the basis of these findings,it is concluded that loose fit tape inserts are superior to tight fit tapes in terms of heat transfer and ease of replacement.
文摘The thermo-hydraulic properties of circular tubes with a twisted tape inside(used accordingly to induce turbulence and enhance heat transfer through the tube wall)are described for Reynolds Numbers ranging from 830 to 1990.Tapes twisted with the three distinct twist ratios are considered,namely,6,4.4 and 3.Air is used as the working fluid in several tests.For the sake of comparison,the standard tube with no insert is also examined.It is shown that in the presence of the twisted tape,the‘frictional factor’,‘Nusselt Number’and the‘thermal performance factor’are much higher than those obtained for the plain tube.Moreover,the tapes having the lowest twist ratio,i.e.,3,are more effective than the others in terms of heat transfer augmentation.The‘thermal performance factor’is greater than one for all the twisted tapes used in the experiments,which confirms the enhanced performances of the heat exchanger and the related savings in terms of total energy.
文摘The thermal-hydraulic performance of plain tubes with and without wire coils in turbulent regimes is investigated experimentally and numerically.The effects of wire coil distribution(circular cross section)within the tube were explored experimentally,and water was employed as the working fluid.The numerical simulation was carried out using software programmer ANSYS Fluent 2019 R3 using the finite-volume approach.In the turbulent regime,six cross-sectionedwire coilswere analyzed,including:circular,rectangular,hexagonal,square,star shape,and triangle.The utilization of a tube with a wire coil has been shown to increase heat transfer rate and pump consumption.The results indicate a high level of concurrence,as the deviations are all below 8%.Compared with plain tube,the wire coils,according to the arrangement(TWD),gave the best PEC.The heat transfer enhancement ability of different cross sections follows the following order:StCS>RCS>HCS>SqCS>CCS>TCS.Also,the sequence of pump consumption for each cross section is as follows:RCS>StCS>SqCS>HCS>CCS>TCS.
文摘Channel flows of Plate Heat Exchangers (PHEs) were assessed by experiments with three different chevron angle arrangements in turbulent regime. Two chevron angles were selected to assess low and high pressure drop channels, besides a third mixed configuration as to achieve in-between results regarding hydraulic performance. Friction factor correlations were provided with the channel Reynolds number ranging from 1175 to 8325. Two-dimensional (2D) mean velocity field was obtained by Particle Tracking Velocimetry (PTV) with Reynolds number equal to 3450. To the best of our knowledge, this is the first experimental study that quantified the complete 2D velocity field of a typical PHE channel. This value allowed comparison with literature results of Plate and Shell Heat Exchanger (PSHE) channels with the same Reynolds number. PSHE mean velocity field is highly heterogeneous as compared to the one obtained for PHE channels. Peak velocity magnitude in the PSHE center is 50% higher than its bulk velocity, whereas this value is only 15% higher in the PHE center. Pressure drop in PHE mixed channels cannot be approximated by averaging chevron angles: furrow flow prevailed in the specified conditions. The axial velocity is asymmetric regarding the vertical plane. Smooth streamlines prevail in the channel inlet. Recirculation zones at the channel exit affect pipe flow in the manifold outlet with swirling flow structures. The necessary length to obtain fully developed pipe flow at the channel outlet was estimated. Significant velocity components occur in the distribution areas and can limit the heat exchanger performance. The results reported herein are essential to understand how the PHE channel geometry affects the velocity field and, therefore, local heat transfer and dissipation processes.
文摘Abstract: The most popularly used fin types in compact heat exchangers are the serrated fins, wavy fins, louvered fins and plain fins. Amongst these fin types the serrated fins assume lot of importance due to its enhanced thermo-hydraulic performance. Thermo-hydraulic design of CHEs (Compact heat exchangers) is strongly dependent upon the predicted/measured dimensionless performance (Colburnj factor and Fanning friction vs. Reynolds number) of heat transfer surfaces. This paper describes the numerical analysis to study the heat transfer coefficient and friction factor of Serrated fins in water medium. CFD (Computational fluid dynamics) methodology has been used to develop the single phase water heat transfer coefficient and friction factor correlations for serrated fins using ANSYS Fluent 14.5. The results are compared with previous air-cooled models and experimental results of water. The water cooled CFD analysis results shows that the Prandtl number has a large effect on the Nusselt number of the serrated fin geometry. Finally, the generalized correlations are developed for serrated fins taking all geometrical parameters into account. This numerical estimation can reduce the number of tests/experiments to a minimum for similar applications.
文摘This paper deals with the experimental investigation on Nusselt number,friction factor and thermal en-hancement factor of a double pipe heat exchanger equipped with twisted tape consisting wire nails(WN-TT) and plain twisted tapes(P-TT) with three different twist ratios of y 2.0,4.4 and 6.0. Test runs are conducted using the water as the working fluid with Reynolds number range between 2000 and 12000 for WN-TT and P-TT. It is found that Nusselt number,friction factor and thermal enhancement factor in the tube equipped with WN-TT appreciably higher than those in the tube fitted with P-TT and plain tube. Over the range considered Nusselt number,friction factor and thermal enhancement factor in a tube with WN-TT are respectively,1.08 to 1.31,1.1 to 1.75 and 1.05 to 1.13 times of those in tube with P-TT. The better performance of WN-TT is due to combined effects of the follow-ing factors:(1) common swirling flow generated by P-TT,(2) additional turbulence offered by the wire nails. Em-pirical correlations for Nusselt number,friction factor and thermal enhancement factor are also formulated from the experimental results of WN-TT and P-TT.
基金Supported by the National High Technology Research and Development Program of China(2007BAF13B01)
文摘The single-phase pressure drop and heat transfer in a rotor-assembled strand inserted tube were measured using water as the working fluid.Experiment using a smooth tube was carried out to calibrate the experimental system and the data reduction method.In the experiment,fixed mounts were used to eliminate the entrance effect. The experimental results of smooth tube show that employment of fixed mounts leads to a visible bias of friction factor at relative low Reynolds numbers,although it does not significantly affect the Nusselt numbers.The measured data of inserted tube reveal that rotor-assembled strand can significantly improve heat transfer with the Nusselt number increased by 101.6%-106.6%and the overall heat transfer coefficient increased by 58.1%-67.4%within the Reynolds number range of 20000 to 36000.Meanwhile,friction factor increases by 52.2%-84.2%within the same Reynolds number range.The correlations of Nusselt number and friction factor as function of the Reynolds number and Prandtl number were determined through multivariant linear normal regression.
文摘The Atkinson equation along with its friction factor is commonly used to estimate pressure requirement in mine ventilation.However,friction factor correlation of flow through broken rock,typically found in blasted stope,gob,rock pit or block caving rock deposits,etc.,is currently unavailable.Also,it is impractical to conduct direct measurements of flow resistance in an inaccessible broken rock zone.This paper aims to develop a new friction factor correlation of flow through broken rock that can be used directly in Atkinson equation.The proposed correlation is valid for broken rocks with diameter between 0.04 and 1.2 m and porosity ranging from 0.23 to 0.7.
基金Supported by the National Natural Science Foundation of Beijing (3102023) and the National Science and Technology Support Plan Project (2011BAA04B02).
文摘The paper described experimental investigation of heat transfer and single-phase pressure drop through tubes with different rotor-assembled strands inserted in the Reynolds number range of 800-9000 with lubricant as working fluid. In the experiment, fixed mounts were employed to eliminate the entrance effect. The experimental results showed that the employment of fixed mounts led to a visible bias of friction factor in the laminar regime while it could not affect the Nusselt numbers significantly. Experiment for the tube inserted with rotors-assembled strand showed remarkable improvement for heat transfer with the Nusselt number increased by 200%-225% in the laminar regime and 125%-160% in the transitional regime. Meanwhile, the friction factor increased inevitably by 200%-300% within the same range of Reynolds number. The comparison of different rotor-assembled strands in-serted tubes and plain tube showed that the heat transfer benefited from the increase of the diameter of rotor-assembled strand with the same lead and the decrease of the lead of rotor-assembled strand, so does the friction factor. Based on experimental data and thorough multivariant linear normal regression method, the correlations of average Nusselt number and friction factor are established.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
文摘The implicit Colebrook equation has been the standard for estimating pipe friction factor in a fully developed turbulent regime. Several alternative explicit models to the Colebrook equation have been proposed. To date, most of the accurate explicit models have been those with three logarithmic functions, but they require more computational time than the Colebrook equation. In this study, a new explicit non-linear regression model which has only two logarithmic functions is developed. The new model, when compared with the existing extremely accurate models, gives rise to the least average and maximum relative errors of 0.0025% and 0.0664%, respectively. Moreover, it requires far less computational time than the Colebrook equation. It is therefore concluded that the new explicit model provides a good trade-off between accuracy and relative computational efficiency for pipe friction factor estimation in the fully developed turbulent flow regime.
基金supported by the Iran National Science Foundation(Grant 96006257)。
文摘Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.
文摘X-ray diffraction (XRD), ball-disc friction and wearing machine and draw-bead test were introduced to investigat the strcusture and workability of IF sheet steel electrogalvanized deposits prepared from sulphate solution system. It was shown that the picking-up of the zinc coating on die strengthened with the increasing of friction factor which was originally affected by the coating's structure. Duing forming, (00X) planes (X= 2, 4) preferential orientation of zinc deposits increased, which resulted in enhanc ing the coating's friction behaviors. Therefore, the forming mechanism of electrogalvedzed deposit was demonstrated that both friction and the stricking -up behaviors of the coating are intensified simultaneously and affect each other.
文摘Research reports show that the accuracies of many explicit friction factor models, having different levels of accuracies and complexities, have been improved using genetic algorithm (GA), a global optimization approach. However, the computational cost associated with the use of GA has yet to be discussed. In this study, the parameters of sixteen explicit models for the estimation of friction factor in the turbulent flow regime were optimized using two popular global search methods namely genetic algorithm (GA) and simulated annealing (SA). Based on 1000 interval values of Reynolds number (Re) in the range of and 100 interval values of relative roughness () in the range of , corresponding friction factor (f) data were obtained by solving Colebrook-White equation using Microsoft Excel spreadsheet. These data were then used to modify the parameters of the selected explicit models. Although both GA and SA led to either moderate or significant improvements in the accuracies of the existing friction factor models, SA outperforms the GA. Moreover, the SA requires far less computational time than the GA to complete the corresponding optimization process. It can therefore be concluded that SA is a better global optimizer than GA in the process of finding an improved explicit friction factor model as an alternative to the implicit Colebrook-White equation in the turbulent flow regime.
文摘New lubricants use nanoparticles like WS2 to improve lubrication performance.The aim of the present study is to determine numerically the skin friction of nanofluid on moving surfaces in a lubricating system.The base fluid is 5W-30 engine oil and the nano-additive is WS2 nanoparticles.This numerical study is based on the multiple-relaxation-time Lattice Boltzmann method(MRT-LBM).The two-dimensional nine-velocity(D2Q9)model is adopted to simulate the nanofluid flow confined by two moving surfaces.The parameters considered are the nanoparticle concentrationand the flow Reynolds number Re.The results obtained show a reduction of skin friction factor when we increase the nanoparticle concentration.
文摘Experiments of de-ionized water flowing in microchannels made in copper blocks were carried out to obtain pressure drop and friction factor and to investigate any possible discrepancies from conventional theory. Three channels with widths of 0.5 mm, 1.0 mm, 1.71 mm, a depth of 0.39 mm and a length of 62 mm were tested. For adiabatic tests, the temperature of the working fluid was maintained at 30 ℃, 60 ℃ and 90 ℃ without any heat fluxes supplied to the test section. The experimental conditions covered a range of Reynolds numbers from 234 to 3,430. For non-adiabatic tests, the inlet temperature and heat flux applied were 30 ℃ and 147 kW/m2 and only for the 0.635 mm channel. The friction factors obtained for the widest channel (Dh = 0.635 mm) are reported for both adiabatic and non-adiabatic experiments to assess possible temperature effects. The paper focuses on the effect of hydraulic diameter on pressure drop and friction factor over the experimental conditions. The pressure drop was found to decrease as the inlet temperature was increased, while the friction factors for the three test sections did not show significant differences. The experimental friction factors were in reasonable agreement with conventional developing flow theory. The effect of temperature on friction factor was not considerable as the friction factor with and without heat flux was almost the same.
文摘The ongoing research for model choice and selection has generated a plethora of approaches. With such a wealth of methods, it can be difficult for a researcher to know what model selection approach is the proper way to proceed to select the appropriate model for prediction. The authors present an evaluation of various model selection criteria from decision-theoretic perspective using experimental data to define and recommend a criterion to select the best model. In this analysis, six of the most common selection criteria, nineteen friction factor correlations, and eight sets of experimental data are employed. The results show that while the use of the traditional correlation coefficient, R2 is inappropriate, root mean square error, RMSE can be used to rank models, but does not give much insight on their accuracy. Other criteria such as correlation ratio, mean absolute error, and standard deviation are also evaluated. The AIC (Akaike Information Criterion) has shown its superiority to other selection criteria. The authors propose AIC as an alternative to use when fitting experimental data or evaluating existing correlations. Indeed, the AIC method is an information theory based, theoretically sound and stable. The paper presents a detailed discussion of the model selection criteria, their pros and cons, and how they can be utilized to allow proper comparison of different models for the best model to be inferred based on sound mathematical theory. In conclusion, model selection is an interesting problem and an innovative strategy to help alleviate similar challenges faced by the professionals in the oil and gas industry is introduced.