This paper studies the regression of a numerical two-dimensional flat plate friction line using the RANS method with the SST k - co turbulence model. Numerical simulations with different inlet turbulence kinetic energ...This paper studies the regression of a numerical two-dimensional flat plate friction line using the RANS method with the SST k - co turbulence model. Numerical simulations with different inlet turbulence kinetic energies are first conducted. Comparing with the experimental data, the finest grid and the appropriate inlet turbulence kinetic energy are selected to compute the fiat plate friction resistance at 14 Reynolds numbers. Two numerical friction lines are obtained by the least squares root fitting method and one similar to that of the ITTC-1957 line and the cubic polynomials in logarithmic scales, and the results are compared to the friction line proposals available in the open literature. Finally, the full scale viscous resistance predictions of DTMB5415, KVLCC2, SUBOFF are compared between the numerical friction line and the friction line proposals available in the open literature based on the form factor approach. It is shown that the form factor keeps relatively constant via the numerical friction line for the bare hull, but the form factor concept in extrapolating the model test results is not appropriate for appended hulls. It is suggested that for computing a form factor numerically, it is best to use a numerical friction line.展开更多
The band conveyer driven by linear friction is a new device. It can reduce drivesize and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original co...The band conveyer driven by linear friction is a new device. It can reduce drivesize and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original conveyer and solving the problems of capacity insufficiency. The technology has brought certain difficulty for engineers, because it has certaindifficulty both in theory and in calculation. Therefore, Visual Basic 6.0 programming technology was used to develop a set of 'the design system of the band conveyer driven bylinear friction.' After being proved in the field, it can completely meet the demands of thedesign. This paper introduced its main theory or basis in design, so as to provide relatedtechnical support to this kind of project.展开更多
The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental ...The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental verification are studied.First,considering the stick-slip phenomenon in the clutch engagement process,a detailed 9-degrees-of-freedom(DOF)model including the body,each cylinder of the engine,clutch and friction lining,torsional damper,transmission and other driveline parts is established,and the calculation formula of friction torque in the clutch engagement process is determined.Second,the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed,and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software.Finally,judder bench test equipment and a corresponding damping test program are developed,and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed.After a large number of tests,the evaluation basis of the test is determined.The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal.When the friction gradient value is less than-0.005 s/m,the judder signal of the measured clutch cannot be completely attenuated,and the judder phenomenon occurs.When the friction gradient is greater than-0.005 s/m,the judder signal can be significantly suppressed and the system connection tends to be stable.展开更多
A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and...A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and the other end immersed through a liquid-air interface. By measuring the resonant spectrum of the modified AFM cantilever, one is able to accurately determine the longitudinal friction coefficient ξv along the fiber axis associated with the vertical oscillation of the hanging fiber and the traversal friction coefficient ξh perpendicular to the fiber axis associated with the horizontal swing of the fiber around its joint with the cantilever. The technique is tested by measurement of the friction coefficient of a fluctuating (and slipping) contact line between the glass fiber and the liquid interface. The experiment verifies the theory and demonstrates its applications. The dual-mode mechanical resonator provides a powerful tool for the study of the contact line dynamics and the rheological property of anisotropic fluids.展开更多
Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction ...Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.展开更多
Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were ...Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested. Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820℃. Density of the final samples decreased with increasing the amount of reinforcing elements (ZrSiO4) before pre-sintering. However after sintering, there is no change in density of the samples including reinforcing elements (ZrSiO4). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed. However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0. 5% reinforced ZrSiO4. The SEM images of the sample indicated that while bronze-based break lining material without ZrSiO4 showed abrasive wear behaviour, increasing the amount of ZrSiO4 resulted a change in abrasive to adhesive wear mechanism. All samples exhibited friction-wear values, which were within the values shown in SAE-J661 standard. With increasing the amount of reinforcing ZrSiO4, wear resistance of the samples was increased. However samples reinforced with 5% and 6% ZrSiO4 showed the best results.展开更多
Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and c...Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and cost and time effectiveness, future water tunnels built for hydropower projects will consist of rock support with the extensive use of shotcrete lining in combination with systematic bolting and concrete lining in the tunnel invert. However, very little research has been performed to find out tunnel surface roughness for shotcrete-lined tunnels with invert concrete, which is important in calculating overall head loss along the waterway system to achieve an optimum and economic hydropower plant design. Hence, the main aim of this article is to review prevailing methods available to calculate tunnel wall roughness, and to use existing methods of head loss calculation to back-calculate roughness of the shotcrete-lined tunnels with invert concrete by exploiting measured head loss and actual cross-sectional profiles of two headrace tunnels from Nepal. Furthermore, the article aims to establish a link between the Manning coefficient and the physical roughness of the shotcrete-lined tunnel with invert concrete and to establish a link between over-break thickness and physical roughness. Attempts are also made to find a correlation between over-break thickness and rock mass quality described by Q-system and discussions are conducted on the potential cost savings that can be made if concrete lining is replaced by shotcrete lining with invert concrete.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51179198,51479207)the High Technology Marine Scientific Research Project of Ministry of Industry and Information Technology of China(Grant No.[2012]534)
文摘This paper studies the regression of a numerical two-dimensional flat plate friction line using the RANS method with the SST k - co turbulence model. Numerical simulations with different inlet turbulence kinetic energies are first conducted. Comparing with the experimental data, the finest grid and the appropriate inlet turbulence kinetic energy are selected to compute the fiat plate friction resistance at 14 Reynolds numbers. Two numerical friction lines are obtained by the least squares root fitting method and one similar to that of the ITTC-1957 line and the cubic polynomials in logarithmic scales, and the results are compared to the friction line proposals available in the open literature. Finally, the full scale viscous resistance predictions of DTMB5415, KVLCC2, SUBOFF are compared between the numerical friction line and the friction line proposals available in the open literature based on the form factor approach. It is shown that the form factor keeps relatively constant via the numerical friction line for the bare hull, but the form factor concept in extrapolating the model test results is not appropriate for appended hulls. It is suggested that for computing a form factor numerically, it is best to use a numerical friction line.
基金Supported by the Beijing Important Constructive Subject of Processing and Storage of Agriculture Products ( PXM2009-014207-078172 )
文摘The band conveyer driven by linear friction is a new device. It can reduce drivesize and conveyor belt tensity, and increase delivery capacity. It has feasibility and usability particularly in altering the original conveyer and solving the problems of capacity insufficiency. The technology has brought certain difficulty for engineers, because it has certaindifficulty both in theory and in calculation. Therefore, Visual Basic 6.0 programming technology was used to develop a set of 'the design system of the band conveyer driven bylinear friction.' After being proved in the field, it can completely meet the demands of thedesign. This paper introduced its main theory or basis in design, so as to provide relatedtechnical support to this kind of project.
基金Supported by National Natural Science Foundation of China (Grant No.51775249)。
文摘The friction judder characteristics during clutch engagement have a significant influence on the NVH of a driveline.In this research,the judder characteristics of automobile clutch friction materials and experimental verification are studied.First,considering the stick-slip phenomenon in the clutch engagement process,a detailed 9-degrees-of-freedom(DOF)model including the body,each cylinder of the engine,clutch and friction lining,torsional damper,transmission and other driveline parts is established,and the calculation formula of friction torque in the clutch engagement process is determined.Second,the influence of the friction gradient characteristics on the amplification or attenuation of the automobile friction judder is analyzed,and the corresponding stability analysis and the numerical simulation of different friction gradient values are carried out with MATLAB/Simulink software.Finally,judder bench test equipment and a corresponding damping test program are developed,and the relationship between the friction coefficient gradient characteristics and the system damping is analyzed.After a large number of tests,the evaluation basis of the test is determined.The research results show that the friction lining with negative gradient characteristics of the friction coefficient will have a judder signal.When the friction gradient value is less than-0.005 s/m,the judder signal of the measured clutch cannot be completely attenuated,and the judder phenomenon occurs.When the friction gradient is greater than-0.005 s/m,the judder signal can be significantly suppressed and the system connection tends to be stable.
基金supported by the Research Grants Council of Hong Kong,China(Grant Nos.605013,604211,and SRFI11/SC02)the National Natural Science Foundation of China(Grand Nos.10974259 and 11274391)
文摘A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and the other end immersed through a liquid-air interface. By measuring the resonant spectrum of the modified AFM cantilever, one is able to accurately determine the longitudinal friction coefficient ξv along the fiber axis associated with the vertical oscillation of the hanging fiber and the traversal friction coefficient ξh perpendicular to the fiber axis associated with the horizontal swing of the fiber around its joint with the cantilever. The technique is tested by measurement of the friction coefficient of a fluctuating (and slipping) contact line between the glass fiber and the liquid interface. The experiment verifies the theory and demonstrates its applications. The dual-mode mechanical resonator provides a powerful tool for the study of the contact line dynamics and the rheological property of anisotropic fluids.
基金Projects 50875253 supported by the National Natural Science Foundation of China20060290505 by the Research Fund for the Doctoral Program of Higher Education of China+2 种基金107054 by the Key Project of Ministry of Education of ChinaBK2008127 by the Natural Science Foundation of Jiangsu ProvinceCX08B_042Z by the Scientific Innovation Program for Postgraduates in Colleges and Universities of Jiangsu Province
文摘Serious accidents of mine hoists caused by high-speed sliding between friction lining and wire rope are often seen in coal mines.In order to solve this problem,we analyzed the contact characteristics between friction lining and wire rope.Then we carried out a dynamic mechanical analysis(DMA) to explain the change in mechanical properties of the friction lining as function of temperature and load frequency and found that temperature has a stronger effect on the mechanical properties than the frequency.We used multiple regression analysis to obtain the thermoviscoelastic constitutive relations of the friction lining.As well we derived the analytic solution for the thermoviscoelastic contact radius and pressure by combining the theory of viscoelastic contact mechanics with thermoviscoelastic constitutive relations.
文摘Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested. Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820℃. Density of the final samples decreased with increasing the amount of reinforcing elements (ZrSiO4) before pre-sintering. However after sintering, there is no change in density of the samples including reinforcing elements (ZrSiO4). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed. However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0. 5% reinforced ZrSiO4. The SEM images of the sample indicated that while bronze-based break lining material without ZrSiO4 showed abrasive wear behaviour, increasing the amount of ZrSiO4 resulted a change in abrasive to adhesive wear mechanism. All samples exhibited friction-wear values, which were within the values shown in SAE-J661 standard. With increasing the amount of reinforcing ZrSiO4, wear resistance of the samples was increased. However samples reinforced with 5% and 6% ZrSiO4 showed the best results.
文摘Most of the existing roughness estimation methods for water tunnels are related to either unlined or concrete/steel-lined tunnels. With the improvement in shotcrete technology, advancement in tunneling equipment and cost and time effectiveness, future water tunnels built for hydropower projects will consist of rock support with the extensive use of shotcrete lining in combination with systematic bolting and concrete lining in the tunnel invert. However, very little research has been performed to find out tunnel surface roughness for shotcrete-lined tunnels with invert concrete, which is important in calculating overall head loss along the waterway system to achieve an optimum and economic hydropower plant design. Hence, the main aim of this article is to review prevailing methods available to calculate tunnel wall roughness, and to use existing methods of head loss calculation to back-calculate roughness of the shotcrete-lined tunnels with invert concrete by exploiting measured head loss and actual cross-sectional profiles of two headrace tunnels from Nepal. Furthermore, the article aims to establish a link between the Manning coefficient and the physical roughness of the shotcrete-lined tunnel with invert concrete and to establish a link between over-break thickness and physical roughness. Attempts are also made to find a correlation between over-break thickness and rock mass quality described by Q-system and discussions are conducted on the potential cost savings that can be made if concrete lining is replaced by shotcrete lining with invert concrete.