Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring...Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors whi...During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.展开更多
Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Var...Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.展开更多
This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynami...This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynamic coefficient of friction with respect to the hydrodynamic Hersey parameter an analytic model is found. The model predicts the coefficient of friction as a function of the relative pressure, the relative Hersey parameter and the real contact coefficient of friction. Questions about local and global friction are raised in the validation of the model against flat tool sheet experiments. For some flat tool sheet experiments reasonable agreements are obtained assuming a rigid punch pressure distribution. The restricted number of user inputs makes the model useful in early tool design simulations.展开更多
Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test...Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.展开更多
The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction mo...The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction model is difficult because the ice surface, being not far removed from its melting point, reacts itself very sen-sitively to pressure, speed, and temperature changes. In this paper, an accepta-ble frictional interaction model was implemented to finite element method to rationally examine the frictional interaction behavior on ice between the tire and the road surface. The formula of friction characteristic according to tem-perature and sliding velocity on the ice surface was applied for tire traction analysis. Numerical results were verified by comparing the outdoor test data and it was confirmed to indicate similar correlation. It is found that the rub-ber-ice friction model will be useful for the improvement of the ice traction performance of tire.展开更多
A neural network friction model with very good prediction accuracy was developed on the basis of industrial data. Simulative calculation indicated that the accuracy of rolling force and motor power calculation can be ...A neural network friction model with very good prediction accuracy was developed on the basis of industrial data. Simulative calculation indicated that the accuracy of rolling force and motor power calculation can be improved using the calculated friction coefficient. It was found that reduction ratio and deformation resistance of strip has more effects than other parameters, and the effects of most parameters are affected by rolling speed.展开更多
The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential ...The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.展开更多
The accurate description of friction is critical in the finite element(FE)simulation of the sheet metal forming process.Usually,friction is oversimplified through the use of a constant Coulomb friction coefficient.In ...The accurate description of friction is critical in the finite element(FE)simulation of the sheet metal forming process.Usually,friction is oversimplified through the use of a constant Coulomb friction coefficient.In this study,the application of an existing multiscale friction model is extended to the hot stamping process.The model accounts for the effects of tool and sheet metal surface topography as well as the evolution of contact pressure,temperature,and bulk strain during hot stamping.Normal load flattening and strip drawing experiments are performed to calibrate the model.The results show that the model can relatively well predict friction in strip draw experiments when the tool surface evolution due to wear is incorporated.Finally,the application of the formulated multiscale friction model was demonstrated in the FE simulation of a hot-stamped part.展开更多
Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designe...Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.展开更多
Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surf...Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.展开更多
Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accurac...Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then,we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.展开更多
Adhesion is one of essences with respect to rubber friction because the magnitude of the friction force is closely related to the magnitude of adhesion on a real contact area. However, the real contact area during sli...Adhesion is one of essences with respect to rubber friction because the magnitude of the friction force is closely related to the magnitude of adhesion on a real contact area. However, the real contact area during sliding depends on the state and history of the contact surface. Therefore, the friction force occasionally exhibits rate-, state-, and pressure dependency. In this study, to rationally describe friction and simulate boundary value problems, a rate-, state-, and pressure-dependent friction model based on the elastoplastic theory was formulated. First, the evolution law for the friction coefficient was prescribed. Next, a nonlinear sliding surface (frictional criterion) was adopted, and several other evolution laws for internal state variables were prescribed. Subsequently, the typical response characteristics of the proposed friction model were demonstrated, and its validity was verified by comparing the obtained results with those of experiments conducted considering the contact surface between a rough rubber hemisphere and smooth acrylic plate.展开更多
High-fidelity cargo airdrop simulation requires the contact dynamics between an aircraft and a cargo to be modeled accurately. This paper presents a general and efficient contact-friction model for simulation of aircr...High-fidelity cargo airdrop simulation requires the contact dynamics between an aircraft and a cargo to be modeled accurately. This paper presents a general and efficient contact-friction model for simulation of aircraft-cargo coupling dynamics during airdrops. The proposed approach has the same essence as that of the finite element node-to-segment contact formulation, which leads to a flexible, straight forward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both the aircraft and the cargo being treated as general six-degree-of-freedom rigid bodies, and thus it eliminates the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through three numerical examples with increasing complexity and fidelity.展开更多
The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/p...The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.展开更多
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis...In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.展开更多
The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is propo...The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.展开更多
Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechan...Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.展开更多
This paper presents a dynamic model for a disc subjected to two sliders rotating in the circumferential direction over the top and bottom surfaces of the disc.The two sliders are vertically misaligned and each is a ma...This paper presents a dynamic model for a disc subjected to two sliders rotating in the circumferential direction over the top and bottom surfaces of the disc.The two sliders are vertically misaligned and each is a mass-spring-damper system with friction between the slider and the disc. The moving loads produced by misaligned sliders can destabilise the whole system.Stability analysis is carried out in a simulated example.This model is meant to explain the friction mechanism for generating unstable vibration in many applications involving rotating discs.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11872033)the Beijing Natural Science Foundation,China(Grant No.3172017)。
文摘Micro sliding phenomenon widely exists in the operation process of mechanical systems,and the micro sliding friction mechanism is always a research hotspot.In this work,based on the total reflection method,a measuring device for interface contact behavior under two-dimensional(2D)vibration is built.The stress distribution is characterized by the light intensity distribution of the contact image,and the interface contact behavior in the 2D vibration process is studied.It is found that the vibration angle of the normal direction of the contact surface and its fluctuation affect the interface friction coefficient,the tangential stiffness,and the fluctuation amplitude of the stress distribution.Then they will affect the change of friction state and energy dissipation in the process of micro sliding.Further,an improved micro sliding friction model is proposed based on the experimental analysis,with the nonlinear change of contact parameters caused by the normal contact stress distribution fluctuation taken into account.This model considers the interface tangential stiffness fluctuation,friction coefficient hysteresis,and stress distribution fluctuation,whose simulation results are consistent well with the experimental results.It is found that considering the nonlinear effect of a certain contact parameter alone may bring a greater error to the prediction of friction behavior.Only by integrating multiple contact parameters can the accuracy of friction prediction is improved.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
文摘During the process of finite element simulation of precision warm forging, the selection of friction models has a direct effect on the precision accuracy of finite element simulation results. Among all the factors which influence the selection of friction models, the distribution rule of normal stress at the tool-workpiece interface is a key one. To find out the distribution rule of normal stress at the tool-workpiece interface, this paper has made a systematic research on three typical plastic deformation processes: forward extrusion, backward extrusion, and lateral extrusion by a method of finite element simulation. Then on the base of synthesizing and correcting traditional friction models, a new general friction model which is fit for warm extrusion is developed at last.
基金supported by the Iran National Science Foundation(Grant 96006257)。
文摘Pressure drop and liquid hold-up are two very important fluid flow parameters in design and control of multiphase flow pipelines.Friction factors play an important role in the accurate calculation of pressure drop.Various empirical and semi-empirical closure relations exist in the literature to calculate the liquid-wall,gas-wall and interfacial friction in two-phase pipe flow.However most of them are empirical correlations found under special experimental conditions.In this paper by modification of a friction model available in the literature,an improved semiempirical model is proposed.The proposed model is incorporated in the two-fluid correlations under equilibrium conditions and solved.Pressure gradient and velocity profiles are validated against experimental data.Using the improved model,the pressure gradient deviation from experiments diminishes by about 3%;the no-slip condition at the interface is satisfied and the velocity profile is predicted in better agreement with the experimental data.
基金supported by the Swedish Foundation for Strategic Research(PV08-0041)
文摘This paper presents the derivation of a first order friction model for lubricated sheet metal forming.Assuming purely plastic real contacts, Newton's law of viscosity, and a square root behavior of the hydrodynamic coefficient of friction with respect to the hydrodynamic Hersey parameter an analytic model is found. The model predicts the coefficient of friction as a function of the relative pressure, the relative Hersey parameter and the real contact coefficient of friction. Questions about local and global friction are raised in the validation of the model against flat tool sheet experiments. For some flat tool sheet experiments reasonable agreements are obtained assuming a rigid punch pressure distribution. The restricted number of user inputs makes the model useful in early tool design simulations.
文摘Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.
文摘The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction model is difficult because the ice surface, being not far removed from its melting point, reacts itself very sen-sitively to pressure, speed, and temperature changes. In this paper, an accepta-ble frictional interaction model was implemented to finite element method to rationally examine the frictional interaction behavior on ice between the tire and the road surface. The formula of friction characteristic according to tem-perature and sliding velocity on the ice surface was applied for tire traction analysis. Numerical results were verified by comparing the outdoor test data and it was confirmed to indicate similar correlation. It is found that the rub-ber-ice friction model will be useful for the improvement of the ice traction performance of tire.
文摘A neural network friction model with very good prediction accuracy was developed on the basis of industrial data. Simulative calculation indicated that the accuracy of rolling force and motor power calculation can be improved using the calculated friction coefficient. It was found that reduction ratio and deformation resistance of strip has more effects than other parameters, and the effects of most parameters are affected by rolling speed.
基金supported by National Nature Science Foundation of China (Grant No.42177157)the Science and Technology Program of Liaoning Province (Grant No.2023JH1/10400003)the Applied Basic Research Programof Liaoning Province (Grant No.2023JH2/101300153).
文摘The injection of large volumes of natural gas into geological formations,as is required for underground gas storage,leads to alterations in the effective stress exerted on adjacent faults.This increases the potential for their reactivation and subsequent earthquake triggering.Most measurements of the frictional properties of rock fractures have been conducted under normal and shear stresses.However,faults in gas storage facilities exist within a true three-dimensional(3D)stress state.A double-direct shear experiment on rock fractures under both lateral and normal stresses was conducted using a true triaxial loading system.It was observed that the friction coefficient increases with increasing lateral stress,but decreases with increasing normal stress.The impact of lateral and normal stresses on the response is primarily mediated through their influence on the initial friction coefficient.This allows for an empirical modification of the rate-state friction model that considers the influence of lateral and normal stresses.The impact of lateral and normal stresses on observed friction coefficients is related to the propensity for the production of wear products on the fracture surfaces.Lateral stresses enhance the shear strength of rock(e.g.Mogi criterion).This reduces asperity breakage and the generation of wear products,and consequently augments the friction coefficient of the surface.Conversely,increased normal stresses inhibit dilatancy on the fracture surface,increasing the breakage of asperities and the concomitant production of wear products that promote rolling deformation.This ultimately reduces the friction coefficient.
文摘The accurate description of friction is critical in the finite element(FE)simulation of the sheet metal forming process.Usually,friction is oversimplified through the use of a constant Coulomb friction coefficient.In this study,the application of an existing multiscale friction model is extended to the hot stamping process.The model accounts for the effects of tool and sheet metal surface topography as well as the evolution of contact pressure,temperature,and bulk strain during hot stamping.Normal load flattening and strip drawing experiments are performed to calibrate the model.The results show that the model can relatively well predict friction in strip draw experiments when the tool surface evolution due to wear is incorporated.Finally,the application of the formulated multiscale friction model was demonstrated in the FE simulation of a hot-stamped part.
基金Supported by State Key Laboratory of Explosion Science and Technology(QNKT11-08)
文摘Adaptive control of servo actuator with nonlinear friction compensation is addressed. LuGre dynamic friction model is adopted to characterize the nonlinear friction and a new kind of slid ing mode observer is designed to estimate the internal immeasurable state of LuGre model. Based on the estimated friction state, adaptive laws are designed to identify the unknown model parameters and the external disturbances, and the system stability and asymptotic trajectory tracking perform ance are guaranteed by Lyapunov function. The position tracking performance is verified by the ex perimental results.
文摘Based on focused ion beam and shear friction apparatus data, the multi-resolutions (0.2 nm-5μm) volume roughness & asperity contact (VR & AC) three-dimensional structure on principle slip surface interface-surface (PSS-IS) is measured on high performance computational platform; and physical plastic-creep friction model is established by using hybrid hyper-singular integral equation & lattice Boltzmann & lattice Green function (BE-LB-LG). The correlation of rheological property and VR & AC evolution under transient (10 μs) macro-normal stress (18-300 MPa) and slip rate (0.25-7.5 m/s) are obtained; and the PSS-IS friction in co-seismic flash heating is quantitative analyzed for the first time.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11872033)the Beijing Natural Science Foundation, China (Grant No. 3172017)。
文摘Studying the evolution of interface contact state, revealing the “black box” behavior in interface friction and establishing a more accurate friction model are of great significance to improve the prediction accuracy of mechanical system performance. Based on the principle of total reflection, a visual analysis technology of interface contact behavior is proposed. Considering the dynamic variation of stress distribution in interface contact, we analyze the nonlinear characteristics of contact parameters in different stages of stick-slip process using the above-mentioned experimental technology. Then,we find that the tangential stiffness of the interface is not a fixed value during the stick-slip process and the stress distribution variation is one of the important factors affecting the tangential stiffness of interface. Based on the previous experimental results, we present an improved stick-slip friction model, considering the change of tangential stiffness and friction coefficient caused by the stress distribution variation. This improved model can characterize the variation characteristics of contact parameters in different stages of stick-slip process, whose simulation results are in good agreement with the experimental data. This research may be valuable for improving the prediction accuracy of mechanical system performance.
文摘Adhesion is one of essences with respect to rubber friction because the magnitude of the friction force is closely related to the magnitude of adhesion on a real contact area. However, the real contact area during sliding depends on the state and history of the contact surface. Therefore, the friction force occasionally exhibits rate-, state-, and pressure dependency. In this study, to rationally describe friction and simulate boundary value problems, a rate-, state-, and pressure-dependent friction model based on the elastoplastic theory was formulated. First, the evolution law for the friction coefficient was prescribed. Next, a nonlinear sliding surface (frictional criterion) was adopted, and several other evolution laws for internal state variables were prescribed. Subsequently, the typical response characteristics of the proposed friction model were demonstrated, and its validity was verified by comparing the obtained results with those of experiments conducted considering the contact surface between a rough rubber hemisphere and smooth acrylic plate.
文摘High-fidelity cargo airdrop simulation requires the contact dynamics between an aircraft and a cargo to be modeled accurately. This paper presents a general and efficient contact-friction model for simulation of aircraft-cargo coupling dynamics during airdrops. The proposed approach has the same essence as that of the finite element node-to-segment contact formulation, which leads to a flexible, straight forward, and efficient code implementation. The formulation is developed under an arbitrary moving frame with both the aircraft and the cargo being treated as general six-degree-of-freedom rigid bodies, and thus it eliminates the restrictions of lateral symmetric assumptions in most existing methods. Moreover, the aircraft-cargo coupling algorithm is discussed in detail, and some practical implementation details are presented. The accuracy and capability of the present method are demonstrated through three numerical examples with increasing complexity and fidelity.
基金supported by the National Natural Science Foundation of China(No.51405393)
文摘The elastic support/dry friction damper is a type of damper which is used for active vibration control in a rotor system.To establish the analytical model of this type of damper,a two-dimensional friction model-ball/plate model was proposed.By using this ball/plate model,a dynamics model of rotor with elastic support/dry friction dampers was established and experimentally verified.Moreover,the damping performance of the elastic support/dry friction damper was studied numerically with respect to some variable parameters.The numerical study shows that the damping performance of the elastic support/dry friction damper is closely related to the stiffness distribution of the rotor-support system,the damper location,the pressing force between the moving and stationary disk,the friction coefficient,the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk.In general,the damper should be located on an elastic support which has a large vibration amplitude in order to achieve a better damping performance,and the more vibration energy in this elastic support concentrates,the better performance of the damper will be.The larger the tangential contact stiffness of the contact interface,and the stiffness of the stationary disk are,the better performance of the damper will be.There will be an optimal value of the friction force at which the damper performs best.
基金Supported by National Natural Science Foundation of China(Grant No.51375346)Doctoral Fund of Ministry of Education of China(Grant No.20110072110056)
文摘In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
文摘The position tracking control problem of an electrical cylinder in the presence of dynamic friction nonlinearities in its transmission process is addressed in this paper. First, a torque decou- piing approach is proposed to formulate the dynamic model. Secondly, to compensate the friction in the case of servo motion, a modified LuGre model is designed to make a continuous transition be- tween a static model at a high speed and a LuGre model at a low speed to avoid instability due to dis- cretization with a finite sampling rate. To accelerate the speed of estimating time-varying parame- ters, a fast adaption law is proposed by designing an attraction domain around a rough value related to the load force. Finally, a discontinuous projection based adaptive robust controller is synthesized to effectively handle parametric uncertainties for ensuring a guaranteed robust performance. A Lya- punov stability analysis demonstrates that all signals including tracking errors have the guaranteed convergent and bounded performance. Extensive comparative simulations with sinusoidal and point- point tracks are obtained respectively in low and high speeds. The results show the effectiveness and the achievable control performance of the proposed control strategy.
基金Supported by National Science Foundation of China(Grant No.51275160)National Science Foundation of China(Grant No.51305462)National Key Basic Research Program of China(973 Program,Grant No.2010CB832700)
文摘Corner contact in gear pair causes vibration and noise,which has attracted many attentions.However,teeth errors and deformation make it difficulty to determine the point situated at corner contact and study the mechanism of teeth impact friction in the current researches.Based on the mechanism of corner contact,the process of corner contact is divided into two stages of impact and scratch,and the calculation model including gear equivalent error-combined deformation is established along the line of action.According to the distributive law,gear equivalent error is synthesized by base pitch error,normal backlash and tooth profile modification on the line of action.The combined tooth compliance of the first point lying in corner contact before the normal path is inversed along the line of action,on basis of the theory of engagement and the curve of tooth synthetic complianceload-history.Combined secondarily the equivalent error with the combined deflection,the position standard of the point situated at corner contact is probed.Then the impact positions and forces,from the beginning to the end during corner contact before the normal path,are calculated accurately.Due to the above results,the lash model during corner contact is founded,and the impact force and frictional coefficient are quantified.A numerical example is performed and the averaged impact friction coefficient based on the presented calculation method is validated.This research obtains the results which could be referenced to understand the complex mechanism of teeth impact friction and quantitative calculation of the friction force and coefficient,and to gear exact design for tribology.
文摘This paper presents a dynamic model for a disc subjected to two sliders rotating in the circumferential direction over the top and bottom surfaces of the disc.The two sliders are vertically misaligned and each is a mass-spring-damper system with friction between the slider and the disc. The moving loads produced by misaligned sliders can destabilise the whole system.Stability analysis is carried out in a simulated example.This model is meant to explain the friction mechanism for generating unstable vibration in many applications involving rotating discs.