期刊文献+
共找到245,120篇文章
< 1 2 250 >
每页显示 20 50 100
Research progress in friction stir processing of magnesium alloys and their metal matrix surface composites: Evolution in the 21^(st )century
1
作者 Roshan Vijay Marode Tamiru Alemu Lemma +3 位作者 Nabihah Sallih Srinivasa Rao Pedapati Mokhtar Awang Adeel Hassan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2091-2146,共56页
Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing... Rising concerns about climate change drive the demand for lightweight components.Magnesium(Mg)alloys are highly valued for their low weight,making them increasingly important in various industries.Researchers focusing on enhancing the characteristics of Mg alloys and developing their Metal Matrix Composites(MMCs)have gained significant attention worldwide over the past decade,driven by the global shift towards lightweight materials.Friction Stir Processing(FSP)has emerged as a promising technique to enhance the properties of Mg alloys and produce Mg-MMCs.Initially,FSP adapted to refine grain size from the micro to the nano level and accelerated the development of MMCs due to its solid-state nature and the synergistic effects of microstructure refinement and reinforcement,improving strength,hardness,ductility,wear resistance,corrosion resistance,and fatigue strength.However,producing defect-free and sound FSPed Mg and Mg-MMCs requires addressing several variables and their interdependencies,which opens up a broad range of practical applications.Despite existing reviews on individual FSP of Mg,its alloys,and MMCs,an attempt has been made to analyze the latest research on these three aspects collectively to enhance the understanding,application,and effectiveness of FSP for Mg and its derivatives.This review article discusses the literature,classifies the importance of Mg alloys,provides a historical background,and explores developments and potential applications of FSPed Mg alloys.It focuses on novel fabrication methods,reinforcement strategies,machine and tool design parameters,material characterization,and integration with other methods for enhanced properties.The influence of process parameters and the emergence of defects are examined,along with specific applications in mono and hybrid composites and their microstructure evolution.The study identifies promising reinforcement materials and highlights research gaps in FSP for Mg alloys and MMCs production.It concludes with significant recommendations for further exploration,reflecting ongoing advancements in this field. 展开更多
关键词 Magnesium alloys friction stir processing Metal matrix composites LIGHTWEIGHT surface modification
下载PDF
Frictional contact analysis of a rigid solid with periodic surface sliding on the thermoelectric material
2
作者 Yali ZHANG Yueting ZHOU Shenghu DING 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期179-196,共18页
Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical... Understanding and characterizing rough contact and wavy surfaces are essential for developing effective strategies to mitigate wear,optimize lubrication,and enhance the overall performance and durability of mechanical systems.The sliding friction contact problem between a thermoelectric(TE)half-plane and a rigid solid with a periodic wavy surface is the focus of this investigation.To simplify the problem,we utilize mixed boundary conditions,leading to a set of singular integral equations(SIEs)with the Hilbert kernels.The analytical solutions for the energy flux and electric current density are obtained by the variable transform method in the context of the electric and temperature field.The contact problem for the elastic field is transformed into the second-kind SIE and solved by the Jacobi polynomials.Notably,the smoothness of the wavy contact surface ensures that there are no singularities in the surface contact stress,and ensures that it remains free at the contact edge.Based on the plane strain theory of elasticity,the analysis primarily examines the correlation between the applied load and the effective contact area.The distribution of the normal stress on the surface with or without TE loads is discussed in detail for various friction coefficients.Furthermore,the obtained results indicate that the in-plane stress decreases behind the trailing edge,while it increases ahead of the trailing edge when subjected to TE loads. 展开更多
关键词 wavy surface periodic contact thermoelectric(TE)material Hilbert integral kernel
下载PDF
Research status and prospects of the fractal analysis of metal material surfaces and interfaces
3
作者 Qinjin Dai Xuefeng Liu +2 位作者 Xin Ma Shaojie Tian Qinghe Cui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期20-38,共19页
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal... As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future. 展开更多
关键词 metal material surfaces and interfaces fractal analysis fractal dimension HOMOGENEITY
下载PDF
3D Printing of Tough Hydrogel Scaffolds with Functional Surface Structures for Tissue Regeneration
4
作者 Ke Yao Gaoying Hong +11 位作者 Ximin Yuan Weicheng Kong Pengcheng Xia Yuanrong Li Yuewei Chen Nian Liu Jing He Jue Shi Zihe Hu Yanyan Zhou Zhijian Xie Yong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期18-45,共28页
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi... Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries. 展开更多
关键词 3D printing Tough hydrogel scaffold Functional surface structure Tissue regeneration BIOMATERIALS
下载PDF
Microstructure and texture evolution in titanium subjected to friction roll surface processing and subsequent annealing 被引量:1
5
作者 施梅勤 高山善匡 +2 位作者 马淳安 渡部英男 井上博史 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2616-2627,共12页
Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient wa... Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient was formed through the thickness of the sheet. The microstructure and texture in as-strained state were investigated by optical microscopy and X-ray diffraction technique On the surface of the sheets, ultra-fine grains were found to have a sharp texture with a preferred orientation strongly related to the FRSP direction. The evolution of microstructure and crystallographic texture of FRSPed samples during recrystallization were also studied by electron back-scattered diffraction (EBSD) technique after being annealed at selected temperatures and time. The results indicated that the preferred orientations resulting from FRSP and annealing in the surface layer were formed during rolling and its recrystallization textures were reduced by FRSP. In addition, the texture evolved stably without change in main components during the annealing. 展开更多
关键词 TITANIUM friction roll surface processing severe plastic deformation preferred orientation RECRYSTALLIZATION textureevolution ultra-fine grains
下载PDF
Microstructural characterization and mechanical properties of friction surfaced AA2024-Ag composites 被引量:6
6
作者 Parisa PIRHAYATI Hamed JAMSHIDI AVAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1756-1770,共15页
The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing proc... The effects of Ag on the microstructure, mechanical properties, and electrical conductivity of AA2024 aluminum alloy coating were investigated. It was fabricated by friction surfacing as an additive manufacturing process. To carry out this investigation, Ag was added by 5.3, 10.6, and 16.0 wt.% to an AA2024 consumable rod by inserting holes in it. It was found that due to the strengthening by solid solution and the formation of precipitates and intermetallic containing Ag, the driving force for grain growth is reduced and consequently the grain size of the coating is decreased. After artificial aging heat treatment, the electrical conductivities of the coatings containing 0 and 16.0 wt.% Ag are increased by 4.15%(IACS) and decreased by 2.15%(IACS), respectively. While considering a linear relationship, it can be proposed that for a 1 wt.% Ag increase, the strength and hardness of the coating will be increased by 1.8% and 1.0%, respectively. It was established that the effect of Al6(Cu,Ag)Mg4 precipitate formation on strengthening is greater than that of Ag-rich intermetallic. 展开更多
关键词 friction surfacing AA2024 aluminum alloy Ag powder AA2024-Ag composite
下载PDF
Effect of Microscale Contact State of Polyurethane Surface on Adhesion and Friction 被引量:9
7
作者 Yu Min Ji Ai-hong Dai Zhen-dong 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期87-91,共5页
The effect of microscale contact of rough surfaces on the adhesion and friction under negative normal forces was experimentally investigated. The adhesive force of single point contact - sapphire ball to flat polyuret... The effect of microscale contact of rough surfaces on the adhesion and friction under negative normal forces was experimentally investigated. The adhesive force of single point contact - sapphire ball to flat polyurethane did not vary with the normal force. With rough surface contact, which was assumed to be a great number of point contacts, the adhesive force increased logarithmically with the normal force. Under negative normal force adhesive state, the tangential force (more than hundred mN) were much larger than the negative normal force (several mN) and increased with the linear decrease of negative normal force. The results reveal why the gecko's toe must slide slightly on the target surface when it makes contact on a surface and suggest how a biomimetic gecko foot might be designed. 展开更多
关键词 POLYURETHANE rough surface ADHESION friction
下载PDF
Wave-Dependence of Friction Velocity, Roughness Length, and Drag Coefficient over Coastal and Open Water Surfaces by Using Three Databases 被引量:8
8
作者 高志球 Qing WANG 周明煜 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第5期887-894,共8页
The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In cont... The parameterization of friction velocity, roughness length, and the drag coefficient over coastal zones and open water surfaces enables us to better understand the physical processes of air-water interaction. In context of measurements from the Humidity Exchange over the Sea Main Experiment (HEXMAX), we recently proposed wave-parameter dependent approaches to sea surface friction velocity and the aerodynamic roughness by using the dimensional analysis method. To extend the application of these approaches to a range of natural surface conditions, the present study is to assess this approach by using both coastal shallow (RASEX) and open water surface measurements (Lake Ontario and Grand Banks ERS-1 SAR) where wind speeds were greater than 6.44 m s-1. Friction velocities, the surface aerodynamic roughness, and the neutral drag coefficient estimated by these approaches under moderate wind conditions were compared with the measurements mentioned above. Results showed that the coefficients in these approaches for coastal shallow water surface differ from those for open water surfaces, and that the aerodynamic roughness length in terms of wave age or significant wave height should be treated differently for coastal shallow and open water surfaces. 展开更多
关键词 sea surface roughness wave parameter friction velocity PARAMETERIZATION
下载PDF
Friction and Wear Study on Friction Pairs with a Biomimetic Non-smooth Surface of 316L Relative to CF/PEEK under a Seawater Lubricated Condition 被引量:5
9
作者 Yingna Liang Dianrong Gao +1 位作者 Bo Chen Jianhua Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第4期47-60,共14页
Current studies of a seawater axial piston pump mainly solve the problems of corrosion and wear in a slipper pair by selecting materials with corrosion resistance, self-lubrication, and wear resistance. In addition, a... Current studies of a seawater axial piston pump mainly solve the problems of corrosion and wear in a slipper pair by selecting materials with corrosion resistance, self-lubrication, and wear resistance. In addition, an appropriate biomimetic non-smooth surface design for the slipper pair can further improve the tribological behavior. In this paper, 316 L stainless steel and CF/PEEK were selected to process the upper and bottom specimens, and the biomimetic non-smooth surface was introduced into the interface between the friction pair. The friction and wear tests were performed on a MMD-5 A tester at a rotation speed of 1000 r/min and load of 200 N under seawater lubricated condition. The results indicate that the main friction form of the smooth surface friction pair corresponds to abrasive wear and adhesive wear and that it exhibits a friction coe cient of 0.05–0.07, a specimen temperature of 56 ℃, a high wear rate, and surface roughness. Pits on the non-smooth surface friction pairs produced hydrodynamic lubrication and reduced abrasive wear, and thus the plowing e ect is their main friction form. The non-smooth surface friction pairs exhibit a friction coe cient of 0.03–0.04, a specimen temperature of 48 ℃, a low wear rate, and surface roughness. The study has important theoretical significance for enriching the lubrication, friction, and wear theory of a seawater axial piston pump, and economic significance and military significance for promoting the marine development and the national defense military. 展开更多
关键词 BIOMIMETIC NON-SMOOTH surface 316L CF/PEEK Seawater LUBRICATION friction and WEAR
下载PDF
Internal Friction and Elastic Study on Surface Nanocrystallized 304 Stainless Steel Induced by High-energy Shot Peening 被引量:4
10
作者 PingWU JingyangWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第2期132-134,共3页
The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrysta... The 304 stainless steel with nanostructured surface layer was successfully obtained by using the high-energy shot peening (HESP) method. The internal friction and Young's modulus of this kind of surface nanocrystallized material were dynamically measured by means of the vibrating reed apparatus. The results implied that different treatment time could induce different microstructure and distribution characteristic of defects in this kind of materials. It is also demonstrated that there is a transition layer between the nano-layer on surface and the coarse grain region inside. The transition layer obviously has certain influence on the overall mechanical properties. 展开更多
关键词 surface nanocrystallization Internal friction High-energy shot peening
下载PDF
Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate on various surface roughness friction pairs 被引量:6
11
作者 张博 徐滨士 +1 位作者 许一 张保森 《Journal of Central South University》 SCIE EI CAS 2011年第5期1326-1333,共8页
Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed.The friction-reductio... Tribological characteristics and self-repairing effect of hydroxy-magnesium silicate (HMS) dispersed in lubricant oil on steel-to-steel friction pairs with various surface roughness were analyzed.The friction-reduction,anti-wear and self-repairing performance of various surface roughness friction pairs were examined by friction testing machine.An operation comparison was made between SJ10W-40 lubricant with and without HMS.The surface morphology and elementary composition of the grinding cracks were analyzed by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS).The results show that the lubrication state changes from boundary lubrication into mixed lubrication after operation in lubricant with HMS.The friction-reduction,anti-wear and self-repairing performance of the friction pairs with various surface roughness are distinctly different.There is a repairing film whose material is different from substrate material on the grinding cracks.In addition,Si,Mg,O,Al and other elements are deposited on the repairing film which contains nanocrystals of these elements.And HMS self-repairing material possesses superior performance of friction-reduction,anti-wear and self-repairing effects. 展开更多
关键词 hydroxy-magnesium silicate surface roughness friction WEAR SELF-REPAIRING
下载PDF
Parametric optimization of friction stir welding parameters of marine grade aluminium alloy using response surface methodology 被引量:10
12
作者 S.SHANAVAS J.EDWIN RAJA DHAS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2334-2344,共11页
Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotatio... Friction stir welding between AA5052-H32aluminium plates is performed by central composite design technique of response surface methodology.It is found that the welding parameters such as tool pin profile,tool rotational speed,welding speed,and tool tilt angle play a major role in deciding the joint characteristics.The joints fabricated using tapered square pin profile tool with a tool rotational speed of600r/min,welding speed of65mm/min,and tool tilt angle of1.5°result in an unexpected weld efficiency of93.51%.Mathematical models are developed to map the correlation between the parameters and responses(ultimate tensile strength and elongation)and these models are optimized to maximize the ultimate tensile strength of the friction stir welded joint.Response plots generated from the mathematical models are used to interpret the interaction effects of the welding parameters on the response variables.Adequacy of the developed models is validated using analysis of variance(ANOVA)technique.Results from the confirmatory experiments plotted in scatter diagram show a good agreement with predicted models.Different grain structures in various zones of the weld are examined by observing the micro and macro structures of the weld. 展开更多
关键词 aluminum alloy 5052 friction stir welding response surface method tensile strength MICROSTRUCTURE
下载PDF
Friction Characteristics of Nanoscale Sliding Contacts between Multi-Asperity Tips and Textured Surfaces 被引量:3
13
作者 TONG Ruiting LIU Geng LIU Tianxiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第6期1109-1117,共9页
Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts betw... Nanoscale sliding contacts of smooth surfaces or between a single asperity and a smooth surface have been widely investigated by molecular dynamics simulations, while there are few studies on the sliding contacts between two rough surfaces. Actually, the friction of two rough surfaces considering interactions between more asperities should be more realistic. By using multiscale method, friction characteristics of two dimensional nanoscale sliding contacts between rigid multi-asperity tips and elastic textured surfaces are investigated. Four nanoscale textured surfaces with different texture shapes are designed, and six multi-asperity tips composed of cylindrical asperities with different radii are used to slide on the textured surfaces. Friction forces are compared for different tips, and effects of the asperity radii on the friction characteristics are investigated. Average friction forces for all the cases are listed and compared, and effects of texture shapes of the textured surfaces are discussed. The results show that textured surface II has a better structure to reduce friction forces. The multi-asperity tips composed of asperities with R=20r0 (r0=0.227 7 nm) or R=30r0 get higher friction forces compared with other cases, and more atoms of the textured surfaces are taken away by these two tips, which are harmful to reduce friction or wear. For the case of R=10ro, friction forces are also high due to large contact areas, but the sliding processes are stable and few atoms are taken away by the tip. The proposed research considers interactions between more asperities to make the model approach to the real sliding contact problems. The results will help to vary or even control friction characteristics by textured surfaces, or provide references to the design of textured surfaces. 展开更多
关键词 friction characteristics multi-asperity tips textured surfaces nanoscale sliding contacts multiscale method
下载PDF
Developing Mg–Zn surface alloy by friction surface allosying: In vitro degradation studies in simulated body fluids 被引量:1
14
作者 Venkateswarlu Badisha Shabana Shaik +1 位作者 Ravikumar Dumpala B.Ratna Sunil 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第7期962-969,共8页
A new variant of friction-assisted process named friction surface alloying(FSA)for developing surface alloys was demonstrated in the present work.In FSA,the dispersed phase is melted and allowed to react with the matr... A new variant of friction-assisted process named friction surface alloying(FSA)for developing surface alloys was demonstrated in the present work.In FSA,the dispersed phase is melted and allowed to react with the matrix material to form an alloy at the surface of a metallic substrate.In the present work,magnesium(Mg)sheets and zinc(Zn)powder were selected,and fine grained(~3.5μm)Mg–Zn surface alloy with improved hardness was produced by FSA.X-ray diffraction studies confirmed the formation of intermetallic phases of Mg and Zn at the surface.From the in vitro degradation studies carried out by immersing in simulated body fluids,a lower corrosion rate was observed for the Mg–Zn surface alloy compared with pure Mg.The surface morphologies after immersion studies indicated large degraded areas on the base Mg compared with Mg–Zn.The results demonstrate the potential of FSA in developing Mg-based surface alloys without melting the substrate to impart better surface properties. 展开更多
关键词 friction stir processing surface alloy MAGNESIUM ZINC CORROSION DEGRADATION
下载PDF
NUMERICAL SIMULATION OF FLOW FIELD BETWEEN FRICTIONAL PAIRS IN HYDROVISCOUS DRIVE SURFACE 被引量:8
15
作者 HUANG Jiahai QIU Minxiu LIAO Lingling FU Linjian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期72-75,共4页
The flow field of the oil film between frictional pairs in the hydroviscous drive test rig is investigated. A three-dimensional Navier-Stokes(N-S) equation considering viscous force and inertial force rather than Re... The flow field of the oil film between frictional pairs in the hydroviscous drive test rig is investigated. A three-dimensional Navier-Stokes(N-S) equation considering viscous force and inertial force rather than Reynolds equation or modified Reynolds equation is presented to model the flow field. Pressure and temperature distribution in radial and circumferential direction under three different conditions, i.e., isothermal, that considering viscosity-temperature characteristic as well as shear thinning non-Newtonian fluid are simulated, respectively, by utilizing the commercial computational fluid dynamics(CFD) software FLUENT. The results reveal that the grooves on the driven plate make the pressure, temperature distribution present periodic variation. The oil temperature and shear rate have important effects on the flow field between frictional pairs, and the oil temperature is more important parameter. The simulation results lay a theoretical foundation for the reasonable designs ofhydroviscous drive. 展开更多
关键词 Hydroviscous drive Modulated clutch frictional plates Numerical simulation
下载PDF
Magnesium based surface metal matrix composites by friction stir processing 被引量:7
16
作者 B.Ratna Sunil G.Pradeep Kumar Reddy +1 位作者 Hemendra Patle Ravikumar Dumpala 《Journal of Magnesium and Alloys》 SCIE EI CAS 2016年第1期52-61,共10页
Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the materi... Surface metal matrix composites(MMCs)are a group of modern engineered materials where the surface of the material is modified by dispersing secondary phase in the form of particles or fibers and the core of the material experience no change in chemical composition and structure.The potential applications of the surface MMCs can be found in automotive,aerospace,biomedical and power industries.Recently,friction stir processing(FSP)technique has been gaining wide popularity in producing surface composites in solid state itself.Magnesium and its alloys being difficult to process metals also have been successfully processed by FSP to fabricate surface MMCs.The aim of the present paper is to provide a comprehensive summary of state-of-the-art in fabricating magnesium based composites by FSP.Influence of the secondary phase particles and grain refinement resulted from FSP on the properties of these composites is also discussed. 展开更多
关键词 surface composites friction stir processing HARDNESS Light weight Magnesium alloys Biomedical implants
下载PDF
Application of response surface methodology to maximize tensile strength and minimize interface hardness of friction welded dissimilar joints of austenitic stainless steel and copper alloy 被引量:6
17
作者 G. VAIRAMANI T. SENTHIL KUMAR +1 位作者 S. MALARVIZHI V. BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2250-2259,共10页
An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copp... An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process. 展开更多
关键词 friction welding austenitic stainless steel copper alloy tensile strength interface hardness response surface methodology
下载PDF
Predictions of friction and flash temperature in marine gears based on a 3D line contact mixed lubrication model considering measured surface roughness 被引量:5
18
作者 SHI Xiu-jiang LU Xi-qun +5 位作者 HE Tao SUN Wen TONG Qing-shun MA Xuan ZHAO Bin ZHU Dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第5期1570-1583,共14页
Wear and scuffing failures often occur in marine transmission gears due to high friction and flash temperature at the interface between the meshing-teeth.In this paper,a numerical solution procedure was developed for ... Wear and scuffing failures often occur in marine transmission gears due to high friction and flash temperature at the interface between the meshing-teeth.In this paper,a numerical solution procedure was developed for the predictions of transient friction and flash temperature in the marine timing gears during one meshing circle based on the 3D line contact mixed lubrication simulation,which had been verified by comparing the flash temperature with those from Blok’s theory.The effect of machined surface roughness on the mixed lubrication characteristics is studied.The obtained results for several typical gear pairs indicate that gear pair 4-6 exhibits the largest friction and the highest interfacial temperature increase due to severe rough surface asperity contacts,while the polished gear surfaces yield the smallest friction and the lowest interfacial temperature.In addition,the influences of the operating conditions and the gear design parameters on the friction-temperature behaviors are discussed.It is observed that the conditions of heavy load and low rotational velocity usually lead to significantly increased friction and temperature.In the meantime,by optimizing the gear design parameters,such as the modulus and the pressure angle,the performance of interfacial friction and temperature can be significantly improved. 展开更多
关键词 GEARS 3D line contact mixed lubrication surface roughness friction flash temperature
下载PDF
The Surface Friction and the Flow over Mountain 被引量:1
19
作者 伍荣生 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第3期272-278,共7页
The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have bee... The flow over mountain is quite complicated. There are a lot of papers on this problem and a lot of progresses have been made. However, in the most of these papers, just the dynamics contributions of mountain have been analysed; the effect of the friction is often neglected. Since the frictional effect is always associated with flow, especially when it flows over the mountain. The study shows that the friction is small in the magnitude but it is not a negligible effect because it changes the features of the flow. In the case of super-or sub-critical flow, there are two extremes: one maximum, one minimum of the fluid surface on the lee-side of the mountain, while in the inviscid fluid, there is just one extreme. The frictional effect should neither be too strong nor too weak to make the situation happened according to the investigation of this paper. 展开更多
关键词 OVER The surface friction and the Flow over Mountain
下载PDF
Influence of tool rotational speed on microstructure and sliding wear behavior of Cu/B_4C surface composite synthesized by friction stir processing 被引量:3
20
作者 R.SATHISKUMAR I.DINAHARAN +1 位作者 N.MURUGAN S.J.VIJAY 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期95-102,共8页
An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The ... An attempt was made to synthesize Cu/B4C surface composite using friction stir processing(FSP) and to analyze the influence of tool rotational speed on microstructure and sliding wear behavior of the composite. The tool rotational speed was varied from 800 to 1200 r/min in step of 200 r/min. The traverse speed, axial force, groove width and tool pin profile were kept constant. Optical microscopy and scanning electron microscopy were used to study the microstructure of the fabricated surface composites. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The results indicate that the tool rotational speed significantly influences the area of the surface composite and the distribution of B4C particles. Higher rotational speed exhibits homogenous distribution of B4C particles, while lower rotational speed causes poor distribution of B4C particles in the surface composite. The effects of tool rotational speed on the grain size, microhardness, wear rate, worn surface and wear debris were reported. 展开更多
关键词 surface composite friction stir processing rotational speed wear rate MICROSTRUCTURE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部