The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robus...The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.展开更多
Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording con...Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type.展开更多
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2006AA110101)
文摘The identification of maximum road friction coefficient and optimal slip ratio is crucial to vehicle dynamics and control.However,it is always not easy to identify the maximum road friction coefficient with high robustness and good adaptability to various vehicle operating conditions.The existing investigations on robust identification of maximum road friction coefficient are unsatisfactory.In this paper,an identification approach based on road type recognition is proposed for the robust identification of maximum road friction coefficient and optimal slip ratio.The instantaneous road friction coefficient is estimated through the recursive least square with a forgetting factor method based on the single wheel model,and the estimated road friction coefficient and slip ratio are grouped in a set of samples in a small time interval before the current time,which are updated with time progressing.The current road type is recognized by comparing the samples of the estimated road friction coefficient with the standard road friction coefficient of each typical road,and the minimum statistical error is used as the recognition principle to improve identification robustness.Once the road type is recognized,the maximum road friction coefficient and optimal slip ratio are determined.The numerical simulation tests are conducted on two typical road friction conditions(single-friction and joint-friction)by using CarSim software.The test results show that there is little identification error between the identified maximum road friction coefficient and the pre-set value in CarSim.The proposed identification method has good robustness performance to external disturbances and good adaptability to various vehicle operating conditions and road variations,and the identification results can be used for the adjustment of vehicle active safety control strategies.
文摘Cone penetration testing (CPT) is a cost effective and popular tool for geotechnical site characterization. CPT consists of pushing at a constant rate an electronic penetrometer into penetrable soils and recording cone bearing (q<sub>c</sub>), sleeve friction (f<sub>c</sub>) and dynamic pore pressure (u) with depth. The measured q<sub>c</sub>, f<sub>s</sub> and u values are utilized to estimate soil type and associated soil properties. A popular method to estimate soil type from CPT measurements is the Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ratio, R<sub>f</sub> [where: R<sub>f</sub> = (f<sub>s</sub>/q<sub>c</sub>)100%]. There are distortions in the CPT measurements which can result in erroneous SBT plots. Cone bearing measurements at a specific depth are blurred or averaged due to q<sub>c</sub> values being strongly influenced by soils within 10 to 30 cone diameters from the cone tip. The q<sub>c</sub>HMM algorithm was developed to address the q<sub>c</sub> blurring/averaging limitation. This paper describes the distortions which occur when obtaining sleeve friction measurements which can in association with q<sub>c</sub> blurring result in significant errors in the calculated R<sub>f</sub> values. This paper outlines a novel and highly effective algorithm for obtaining accurate sleeve friction and friction ratio estimates. The f<sub>c</sub> optimal filter estimation technique is referred to as the OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm are outlined in this paper along with the results from a challenging test bed simulation. The test bed simulation demonstrates that the OSFE-IFM algorithm derives accurate estimates of sleeve friction from measured values. Optimal estimates of cone bearing and sleeve friction result in accurate R<sub>f</sub> values and subsequent accurate estimates of soil behavior type.