期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Friction stir based welding and processing technologies-processes,parameters,microstructures and applications:A review 被引量:75
1
作者 G.K.Padhy C.S.Wu S.Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期1-38,共38页
Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joi... Friction stir welding [FSW) has achieved remarkable success in the joining and processing of aluminium alloys and other softer structural alloys. Conventional FSW, however, has not been entirely successful in the joining, processing and manufacturing of different desired materials essential to meet the sophis- ticated green globe requirements. Through the efforts of improving the process and transferring the existing friction stir knowledge base to other advanced applications, several friction stir based daughter technologies have emerged over the timeline, A few among these technologies are well developed while others are under the process of emergence. Beginning with a broad classification of the scattered fric- tions stir based technologies into two categories, welding and processing, it appears now time to know, compile and review these to enable their rapid access for reference and academia. In this review article, the friction stir based technologies classified under the categol^J of welding are those applied for join- ing of materials while the remnant are labeled as friction stir processing (FSP) technologies. This review article presents an overview of four general aspects of both the developed and the developing friction stir based technologies, their associated process parameters, metallurgical features of their products and their feasibility and application to various materials. The lesser known and emerging technologies have been emphasized. 展开更多
关键词 friction stir welding friction stir processing friction stir scribe friction stir riveting friction stir channeling friction stir forming friction stir surfacing friction stir additive manufacturing friction stir cladding
原文传递
Preface to the special issue: Friction stir welding and processing
2
作者 Zongyi Ma 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期I0001-I0002,共2页
Friction stir welding (FSW), invented at The Welding Institute, UK, in 1991, is a highly efficient solid-state joining technique, involving frictional and adiabatic heating, plastic deformation and solid-state diffu... Friction stir welding (FSW), invented at The Welding Institute, UK, in 1991, is a highly efficient solid-state joining technique, involving frictional and adiabatic heating, plastic deformation and solid-state diffusion. It has been widely accepted as a "green" technology due to its energy efficiency and environment friendliness, and is considered the most significant development in the field of material joining over the past two decades. Friction stir processing (FSP) was later developed based on the basic principles of FSW. FSP has proven to be an effective and versatile metalworking technique for modifying and fabricating metallic materials. 展开更多
关键词 FSW FSP Preface to the special issue:friction stir welding and processing
原文传递
Influence of a non-rotating shoulder on heat generation,microstructure and mechanical properties of dissimilar AA2024/AA7050 FSW joints 被引量:6
3
作者 Alessandro Barbini Jan Carstensen Jorge F.dos Santos 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期119-127,共9页
Friction stir welding (FSW) and stationary shoulder friction stir welding (SSFSW) were carried out for the butt joining of dissimilar AA2024-T3 and AA7050-T7651 aluminium alloys with thicknesses of 2 mm. A compari... Friction stir welding (FSW) and stationary shoulder friction stir welding (SSFSW) were carried out for the butt joining of dissimilar AA2024-T3 and AA7050-T7651 aluminium alloys with thicknesses of 2 mm. A comparison between the two processes was performed by varying the welding speed while keeping the rotational speed constant, Through the analysis of the force and torque produced during welding and a simple analytical model, it was possible to show that in SSFSW there is more effective coupling with the tool and the heat produced is more efficiently distributed. This process decreases both the welding area and the diffusion at the interface of the two alloys compared with FSW. The minimum microhardness occurred at the advancing side (AS) at the interface between the thermo-mechanically affected zone (TMAZ) and the stir zone (SZ) in both processes, although the decrease was more gradual in SSFSW. This interface is also where all specimens failed for both welding technologies. An increase in tensile strength was measured in SSFSW compared with standard FSW. Furthermore, it was possible to establish the mechanical performance of the material in the fracture zone using digital image correlation. 展开更多
关键词 Stationary shoulder friction stir welding friction stir welding Dissimilar welded joints process analysis Microstructure analysis Mechanical behaviour
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部