This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and propo...This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.展开更多
The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and ...The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.展开更多
The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite eleme...The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite element model is established to simulate the temperature field of this process. The transient temperature distribution during the inertia friction welding process of two similar workpieces of GH4169 alloy is calculated. The region of the circular cross-section of the workpiece is divided into a number of four-nodded isoparametric elements. In this model, the temperature dependent thermal properties, time dependent heat inputs, contact condition of welding interface, and deformation of the flash were considered. At the same time, the convection and radiation heat losses at the surface of the workpieces were also considered. A temperature data acquisition system was developed. The temperature at some position near the welding interface was measured using this system. The calculated temperature agrees well with the experimental data. The deformation of the flash and the factor affecting the temperature distribution at the welding interface are also discussed.展开更多
The thermal model of FSW based on the thermal elastic-plastic finite element method, and the transient temperature distribution of FS welded joints of 2024-T4 Al was simulated by using this model, which provides usefu...The thermal model of FSW based on the thermal elastic-plastic finite element method, and the transient temperature distribution of FS welded joints of 2024-T4 Al was simulated by using this model, which provides useful information for the investigation of FSW process. Simulation resuits show that the temperature distribution of the weld gradually decreases toward periphery in a radiate format, whose center is the probe, and the highest temperature in the weld can reach about 400℃. The initial terminal of the weld is a zone, in which the temperature gradient is great, and defects of the welding are easily produced in this zone. Temperature change at the end of the welded joint is as layer variation, the local serious defects are not easy to produce in this zone.展开更多
A brief review is given about the friction and wear properties of high temperature alloys. Above a critical temperature, if the oxide becomes ductile, it will flow over the surface and prevent metal-to-metat contact. ...A brief review is given about the friction and wear properties of high temperature alloys. Above a critical temperature, if the oxide becomes ductile, it will flow over the surface and prevent metal-to-metat contact. In order to study the tribology of oxide lubrication. a series of tests were carried out using Cu(ReO4)2 as a lubricant. The effects of time. Surface finish. substrates. load and temperature were investigated. A mechanism of lubrication is proposed in which the surface slip predominates along with mechanical attachment of oxide to the surface.展开更多
Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy A12024- T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three differen...Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy A12024- T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were amxed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to A12024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in A12024-T3 and is potentially more useful than models derived previously.展开更多
Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experie...Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.展开更多
A 40 Cr steel was formed into a chain-wheel using a warm extrusion technology. The surface roughness and micro-structure, micro-hardness and phases of the extruded samples at different temperatures were analyzed using...A 40 Cr steel was formed into a chain-wheel using a warm extrusion technology. The surface roughness and micro-structure, micro-hardness and phases of the extruded samples at different temperatures were analyzed using a three-dimensional optical microscope(OM), micro-hardness tester, and X-ray diffraction(XRD), respectively. The morphologies, chemical element distributions and phases of worn tracks at the extrusion temperatures of 550, 650 and 750 ℃ were analyzed using a scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and XRD, respectively. The friction-wear behaviors of extruded samples under oil-lubrication condition were observed using a wear test. And the effects of extrusion temperatures on the wear mechanism were discussed. The results show that residual austenite and pearlite exist on the sample at the extrusion temperature of 550 ℃ with the corresponding grain size and surface micro-hardness of 32.7 nm and 370.33 HV, respectively. The average coefficient of friction(COF) of extruded sample at the temperature of 550 ℃ is 0.196 5, and the wear mechanism is fatigue and abrasive wear. While the acicular martensite exists on the extruded samples at the extrusion temperatures of 650 and 750 ℃, the corresponding grain sizes are 30.0 and 29.1 nm, respectively. The average COF(coefficient of friction) of extruded sample at the temperatures of 650 and 750 ℃ are 0.187 4 and 0.163 6, respectively, and the wear mechanism is abrasive wear. As a result, the friction performance of extruded sample at the temperatures of 650 and 750 ℃ is better than that at the temperature of 550 ℃.展开更多
Wear and scuffing failures often occur in marine transmission gears due to high friction and flash temperature at the interface between the meshing-teeth.In this paper,a numerical solution procedure was developed for ...Wear and scuffing failures often occur in marine transmission gears due to high friction and flash temperature at the interface between the meshing-teeth.In this paper,a numerical solution procedure was developed for the predictions of transient friction and flash temperature in the marine timing gears during one meshing circle based on the 3D line contact mixed lubrication simulation,which had been verified by comparing the flash temperature with those from Blok’s theory.The effect of machined surface roughness on the mixed lubrication characteristics is studied.The obtained results for several typical gear pairs indicate that gear pair 4-6 exhibits the largest friction and the highest interfacial temperature increase due to severe rough surface asperity contacts,while the polished gear surfaces yield the smallest friction and the lowest interfacial temperature.In addition,the influences of the operating conditions and the gear design parameters on the friction-temperature behaviors are discussed.It is observed that the conditions of heavy load and low rotational velocity usually lead to significantly increased friction and temperature.In the meantime,by optimizing the gear design parameters,such as the modulus and the pressure angle,the performance of interfacial friction and temperature can be significantly improved.展开更多
The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the P...The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the PVC gasket in an operational mine hoist was investigated, a numerical simulation using ANSYS is presented and the distribution of the temperature and heat flux were studied under basic assumptions. The results show that the temperature gradually decreases as the radius of the model increases and the isotherms are arcs of concentric semi-circle. The heat flux is of bilateral symmetry in the model and decreases radially. The theoretical values correspond with the measured values for a short time (τ≤ 100 s) when the steel wire rope slides.展开更多
A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process...A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process. Three-dimensional results under different process parameters were presented. Results indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The calculated temperature field can be fitted well with the one from the experimental test. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface, which is formed by the specific material flow patterns in FSW. The maximum temperature can be increased with increasing the welding speed and the angular velocity in the current numerical modelling.展开更多
3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 ...3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 aluminum alloy were systematicaUy investigated. The temperature measurement was performed to validate the reliability of the model. The simulation results are in good agreement with the experiments. Results show that changing the rotation speed has no influence on the time for reaching the peak temperature at certain point in the workpiece at a constant welding speed. While increasing the welding speed has significant effect on the time for reaching the peak temperature but the value of peak temperature changes little.展开更多
Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal character...Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.展开更多
Internal friction (IF) spectra during reverse martensitic transformation from 35 to 135°C at different temperature rates of 0.5,0.75,and 1°C/min for Ti50Ni27Cu23 shape memory alloy (SMA) samples were mea...Internal friction (IF) spectra during reverse martensitic transformation from 35 to 135°C at different temperature rates of 0.5,0.75,and 1°C/min for Ti50Ni27Cu23 shape memory alloy (SMA) samples were measured with a dynamic mechanical analyzer,respectively.The IF spectra were characterized by IF peak increasing progressively and peak shifting toward high temperature with an increase in temperature rate.An iterative approach was used to calculate the precise intrinsic and approximate transitory IF contributions to the normal IF spectrum.The quantitatively analyzed results indicate that the transitory IF of this alloy is nonlinearly dependent on the temperature rate and obeys a power law with a power coefficient of 0.55.The predicted and experimental IF spectra at different temperature rates of 0.75 and 1°C/min agree well with each other,respectively.展开更多
The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressu...The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressure and sliding speed on the lubricant behaviour(i.e. evolutions of the coefficient of friction(COF) and the breakdown phenomenon) were experimentally studied. The evolutions of COF at elevated temperatures consisted of three distinct stages with different friction mechanisms. The first stage(stage Ⅰ) occurred with low friction when the boundary lubrication was present. The second stage(stage Ⅱ) was the transition process in which the COF rapidly increased as the lubricant film thickness decreased to a critical value. In the final plateau stage(stage Ⅲ), lubricant breakdown occurred and intimate contact at the interface led to high friction values. At the low friction stage(stage Ⅰ), the value of COF increased with increasing temperature. The increase in temperature, contact pressure and sliding speed as well as the decrease in initial lubricant volume accelerated the lubricant breakdown.展开更多
In this paper,a new storage method for the three-dimensional temperature field data based on artificial neural network(ANN)was proposed.A multilayer perceptron that takes the coordinate(x,y,z)as inputs and temperature...In this paper,a new storage method for the three-dimensional temperature field data based on artificial neural network(ANN)was proposed.A multilayer perceptron that takes the coordinate(x,y,z)as inputs and temperature T as output,is used to fit the three-dimension-al welding temperature field.Effect of number of ANN layers and number of neurons on the fitting errors is investigated.It is found that the errors decrease with the number of hidden layers and neural numbers per layers generally.When the number of hidden layers increases from 1 to 6,the maximum temperature error decreases from 74.74℃to less than 2℃.The three-dimensional temperature field data is obtained by finite element simulation,and the experimental verification is completed by comparing the simulation peak temperatures with the measured results.As an example,an ANN with 4 hidden layers and 12 neurons in each layer were applied to test the performance of the proposed method in storage of the three-dimensional temperature field data during friction stir welding.It is found that the average error between the temperature data stored in ANN and the original simulation data that stored point-by-point is 0.517℃,and the error on the maximum temper-ature is 0.193℃,while the occupied disk space is only 0.27%of that is required in the conventional point-by-point storage.展开更多
The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 ℃, the coefficient o...The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 ℃, the coefficient of the friction (COF) decreased with the increase of sliding velocity and the wear loss of the TTC decreased with the increase of volume fraction of Ti2AlN. The wear mechanisms of the pairs are adhesive wear and the wear debris mainly comes from the contacting nickel-based superalloy. The intergranular fracture and the cracking of the phase boundary in the lamellar structure are the wear mode of TiAl alloy. The wear mode of TTC is phase boundary fracture and adhesive spalling. The abrasive resistance of TTC is slightly higher than that of TiAl alloy.展开更多
The temperature field in unsteady phase greatly affects the quality of friction plug welding(FPW).An analytical model is put forward to correlate the process parameters and the temperature field in unsteady phase of F...The temperature field in unsteady phase greatly affects the quality of friction plug welding(FPW).An analytical model is put forward to correlate the process parameters and the temperature field in unsteady phase of FPW.Applying the von Mises criterion for plastic deformation and linearizing the heat flux,the model is achieved by Laplace transformation.The predicated peak temperature and peak time agree with the experiment data,with errors of about 4%and 8%,of AA7075-T6 FPW.展开更多
A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to...A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.展开更多
The change of temperature field on the friction facing during contact wearing for 3 wear-resistant alloys.Co-Cr-Ni-Si,Co-Cr-Mo and Co-Cr-W has been monitored by the infrared sensing thermography.Their flash temperatur...The change of temperature field on the friction facing during contact wearing for 3 wear-resistant alloys.Co-Cr-Ni-Si,Co-Cr-Mo and Co-Cr-W has been monitored by the infrared sensing thermography.Their flash temperature of the wearing area was measured.展开更多
文摘This paper analyzes the reasons of the tension unbalance of the ropes in multi-rope fric-tion winder, introduces the method of an on-line monitoring rope tensions with a testing device de-veloped by authors, and proposes the criteria of the fault diagnosis and the method of adjustment for the tension unbalance of the ropes, which is important to the theoretical study on the tension unbalance of the ropes and the maintenance of multi-rope winder.
基金Project (51075342) supported by the National Natural Science Foundation of ChinaProject (2007CB714704) supported by the National Basic Research Program of China
文摘The fretting wear behavior of 0Cr20Ni32AlTi alloy was investigated with crossed cylinder contact under 80 N at 300 and 400 °C.Wear scar and debris were analyzed systematically by scanning electron microscopy and X-ray photoelectron spectroscopy.The results show that the friction logs are mixed fretting regime and gross slip regime with the magnitudes of displacement of 10 and 20 μm,respectively.Severe wear and friction oxidation occur on the material surface.A large number of granular debris produced in the fretting process can be easily congregated and adhered at the contact zone after repeated crushes.The resultant of friction oxidation is mainly composed of Fe3O4,Fe2O3,Cr2O3 and NiO.Temperature and friction are the major factors affecting the oxidation reaction rate.The fretting friction effect can enhance the oxidation reaction activity of surface atoms of 0Cr20Ni32AlTi alloy and reduce the oxidation activation energy.As result,the oxidation reaction rate is accelerated.
文摘The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite element model is established to simulate the temperature field of this process. The transient temperature distribution during the inertia friction welding process of two similar workpieces of GH4169 alloy is calculated. The region of the circular cross-section of the workpiece is divided into a number of four-nodded isoparametric elements. In this model, the temperature dependent thermal properties, time dependent heat inputs, contact condition of welding interface, and deformation of the flash were considered. At the same time, the convection and radiation heat losses at the surface of the workpieces were also considered. A temperature data acquisition system was developed. The temperature at some position near the welding interface was measured using this system. The calculated temperature agrees well with the experimental data. The deformation of the flash and the factor affecting the temperature distribution at the welding interface are also discussed.
文摘The thermal model of FSW based on the thermal elastic-plastic finite element method, and the transient temperature distribution of FS welded joints of 2024-T4 Al was simulated by using this model, which provides useful information for the investigation of FSW process. Simulation resuits show that the temperature distribution of the weld gradually decreases toward periphery in a radiate format, whose center is the probe, and the highest temperature in the weld can reach about 400℃. The initial terminal of the weld is a zone, in which the temperature gradient is great, and defects of the welding are easily produced in this zone. Temperature change at the end of the welded joint is as layer variation, the local serious defects are not easy to produce in this zone.
文摘A brief review is given about the friction and wear properties of high temperature alloys. Above a critical temperature, if the oxide becomes ductile, it will flow over the surface and prevent metal-to-metat contact. In order to study the tribology of oxide lubrication. a series of tests were carried out using Cu(ReO4)2 as a lubricant. The effects of time. Surface finish. substrates. load and temperature were investigated. A mechanism of lubrication is proposed in which the surface slip predominates along with mechanical attachment of oxide to the surface.
基金the University of Malaya (MU) that awarded UMRG Grants RG042/09AETand RG088/10AET to the authors for research work to beconducted at the University of MalayaSpecial thanks are given to CREAM-CIDB for providing partial financial support to the first author via Project CREAM/R&D-08//3/2(8)
文摘Heat flux characteristics are critical to good quality welding obtained in the important engineering alloy A12024- T3 by the friction stir welding (FSW) process. In the present study, thermocouples in three different configurations were amxed on the welding samples to measure the temperatures: in the first configuration, four thermocouples were placed at equivalent positions along one side of the welding direction; the second configuration involved two equivalent thermocouple locations on either side of the welding path; while the third configuration had all the thermocouples on one side of the layout but with unequal gaps from the welding line. A three-dimensional, non-linear ANSYS computational model, based on an approach applied to A12024-T3 for the first time, was used to simulate the welding temperature profiles obtained experimentally. The experimental thermal profiles on the whole were found to be in agreement with those calculated by the ANSYS model. The broad agreement between the two kinds of profiles validates the basis for derivation of the simulation model and provides an approach for the FSW simulation in A12024-T3 and is potentially more useful than models derived previously.
文摘Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds(100 and 1000 RPM) to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior(by impression creep tests). The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below A_(c1) temperature of P91 steel while it was above A_(c3) with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.
基金Funded by Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)the Research Project of Scientific Research Innovation for Graduate Students of Jiangsu Province(No.KYLX16-0631)
文摘A 40 Cr steel was formed into a chain-wheel using a warm extrusion technology. The surface roughness and micro-structure, micro-hardness and phases of the extruded samples at different temperatures were analyzed using a three-dimensional optical microscope(OM), micro-hardness tester, and X-ray diffraction(XRD), respectively. The morphologies, chemical element distributions and phases of worn tracks at the extrusion temperatures of 550, 650 and 750 ℃ were analyzed using a scanning electron microscopy(SEM), energy disperse spectroscopy(EDS), and XRD, respectively. The friction-wear behaviors of extruded samples under oil-lubrication condition were observed using a wear test. And the effects of extrusion temperatures on the wear mechanism were discussed. The results show that residual austenite and pearlite exist on the sample at the extrusion temperature of 550 ℃ with the corresponding grain size and surface micro-hardness of 32.7 nm and 370.33 HV, respectively. The average coefficient of friction(COF) of extruded sample at the temperature of 550 ℃ is 0.196 5, and the wear mechanism is fatigue and abrasive wear. While the acicular martensite exists on the extruded samples at the extrusion temperatures of 650 and 750 ℃, the corresponding grain sizes are 30.0 and 29.1 nm, respectively. The average COF(coefficient of friction) of extruded sample at the temperatures of 650 and 750 ℃ are 0.187 4 and 0.163 6, respectively, and the wear mechanism is abrasive wear. As a result, the friction performance of extruded sample at the temperatures of 650 and 750 ℃ is better than that at the temperature of 550 ℃.
基金Project(51905118)supported by the National Natural Science Foundation of ChinaProject(3072020CF0306)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Wear and scuffing failures often occur in marine transmission gears due to high friction and flash temperature at the interface between the meshing-teeth.In this paper,a numerical solution procedure was developed for the predictions of transient friction and flash temperature in the marine timing gears during one meshing circle based on the 3D line contact mixed lubrication simulation,which had been verified by comparing the flash temperature with those from Blok’s theory.The effect of machined surface roughness on the mixed lubrication characteristics is studied.The obtained results for several typical gear pairs indicate that gear pair 4-6 exhibits the largest friction and the highest interfacial temperature increase due to severe rough surface asperity contacts,while the polished gear surfaces yield the smallest friction and the lowest interfacial temperature.In addition,the influences of the operating conditions and the gear design parameters on the friction-temperature behaviors are discussed.It is observed that the conditions of heavy load and low rotational velocity usually lead to significantly increased friction and temperature.In the meantime,by optimizing the gear design parameters,such as the modulus and the pressure angle,the performance of interfacial friction and temperature can be significantly improved.
基金Projects 50225519 supported by the National Outstanding Youth Science Foundation of China0E4458 by the Youth Science Foundation of China Univer-sity of Mining and Technology
文摘The frictional performance of gaskets is greatly affected by frictional heat in operational mine hoists. Based on frictional mechanism and heat transfer theory, the mathematical model of the temperature field of the PVC gasket in an operational mine hoist was investigated, a numerical simulation using ANSYS is presented and the distribution of the temperature and heat flux were studied under basic assumptions. The results show that the temperature gradually decreases as the radius of the model increases and the isotherms are arcs of concentric semi-circle. The heat flux is of bilateral symmetry in the model and decreases radially. The theoretical values correspond with the measured values for a short time (τ≤ 100 s) when the steel wire rope slides.
基金supported by the National Natural Science Foundation of China (Grant Nos.10421202,10802017 and 10225212)the Program for Changjiang Scholars and Innovative Research Team in University of China (PCSIRT)the National Key Basic Research Special Foundation of China (2005CB321704).
文摘A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process. Three-dimensional results under different process parameters were presented. Results indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The calculated temperature field can be fitted well with the one from the experimental test. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface, which is formed by the specific material flow patterns in FSW. The maximum temperature can be increased with increasing the welding speed and the angular velocity in the current numerical modelling.
文摘3D numerical model for friction stir welding (FSW) was developed by using ABAQUS software considering the plastic deformation heat. Effects of the rotation and welding speeds on the temperature field of FSW 2024-73 aluminum alloy were systematicaUy investigated. The temperature measurement was performed to validate the reliability of the model. The simulation results are in good agreement with the experiments. Results show that changing the rotation speed has no influence on the time for reaching the peak temperature at certain point in the workpiece at a constant welding speed. While increasing the welding speed has significant effect on the time for reaching the peak temperature but the value of peak temperature changes little.
文摘Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.
文摘Internal friction (IF) spectra during reverse martensitic transformation from 35 to 135°C at different temperature rates of 0.5,0.75,and 1°C/min for Ti50Ni27Cu23 shape memory alloy (SMA) samples were measured with a dynamic mechanical analyzer,respectively.The IF spectra were characterized by IF peak increasing progressively and peak shifting toward high temperature with an increase in temperature rate.An iterative approach was used to calculate the precise intrinsic and approximate transitory IF contributions to the normal IF spectrum.The quantitatively analyzed results indicate that the transitory IF of this alloy is nonlinearly dependent on the temperature rate and obeys a power law with a power coefficient of 0.55.The predicted and experimental IF spectra at different temperature rates of 0.75 and 1°C/min agree well with each other,respectively.
基金supported by the China Scholarship Council (Grant CSC No. 201706230235): a nonprofit institution that enables talented Chinese students to participate in overseas Ph D programs。
文摘The lubricant behaviour at elevated temperatures was investigated by conducting pin-on-disc tests between P20 tool steel and AA7075 aluminium alloy. The effects of temperature, initial lubricant volume, contact pressure and sliding speed on the lubricant behaviour(i.e. evolutions of the coefficient of friction(COF) and the breakdown phenomenon) were experimentally studied. The evolutions of COF at elevated temperatures consisted of three distinct stages with different friction mechanisms. The first stage(stage Ⅰ) occurred with low friction when the boundary lubrication was present. The second stage(stage Ⅱ) was the transition process in which the COF rapidly increased as the lubricant film thickness decreased to a critical value. In the final plateau stage(stage Ⅲ), lubricant breakdown occurred and intimate contact at the interface led to high friction values. At the low friction stage(stage Ⅰ), the value of COF increased with increasing temperature. The increase in temperature, contact pressure and sliding speed as well as the decrease in initial lubricant volume accelerated the lubricant breakdown.
基金supported by the National Natural Science Foundation of China(Grant No.52175334)the Award Cultivation Foundation from Beijing Institute of Petrochemical Technology(Project No.BIPTACF-009).
文摘In this paper,a new storage method for the three-dimensional temperature field data based on artificial neural network(ANN)was proposed.A multilayer perceptron that takes the coordinate(x,y,z)as inputs and temperature T as output,is used to fit the three-dimension-al welding temperature field.Effect of number of ANN layers and number of neurons on the fitting errors is investigated.It is found that the errors decrease with the number of hidden layers and neural numbers per layers generally.When the number of hidden layers increases from 1 to 6,the maximum temperature error decreases from 74.74℃to less than 2℃.The three-dimensional temperature field data is obtained by finite element simulation,and the experimental verification is completed by comparing the simulation peak temperatures with the measured results.As an example,an ANN with 4 hidden layers and 12 neurons in each layer were applied to test the performance of the proposed method in storage of the three-dimensional temperature field data during friction stir welding.It is found that the average error between the temperature data stored in ANN and the original simulation data that stored point-by-point is 0.517℃,and the error on the maximum temper-ature is 0.193℃,while the occupied disk space is only 0.27%of that is required in the conventional point-by-point storage.
文摘The high-temperature friction and wear properties of TiAl alloys and Ti2AlN/TiAl composites (TTC) in contact with nickel-based superalloy were studied. The results showed that, at 800 and 1 000 ℃, the coefficient of the friction (COF) decreased with the increase of sliding velocity and the wear loss of the TTC decreased with the increase of volume fraction of Ti2AlN. The wear mechanisms of the pairs are adhesive wear and the wear debris mainly comes from the contacting nickel-based superalloy. The intergranular fracture and the cracking of the phase boundary in the lamellar structure are the wear mode of TiAl alloy. The wear mode of TTC is phase boundary fracture and adhesive spalling. The abrasive resistance of TTC is slightly higher than that of TiAl alloy.
文摘The temperature field in unsteady phase greatly affects the quality of friction plug welding(FPW).An analytical model is put forward to correlate the process parameters and the temperature field in unsteady phase of FPW.Applying the von Mises criterion for plastic deformation and linearizing the heat flux,the model is achieved by Laplace transformation.The predicated peak temperature and peak time agree with the experiment data,with errors of about 4%and 8%,of AA7075-T6 FPW.
基金supported by the National Natural Science Foundation of China(Grant No. 40233032)Ministry of Science and Tech-nology (Grant No. 2006BAB18B03 and Grant No.2006BAB18B05)Office of Naval Research (Grant No.N0001409WR20177)
文摘A set of new parameterizations for the friction velocity and temperature scale over gently sloped terrain and in calm synoptic conditions are theoretically derived. The friction velocity is found to be proportional to the product of the square root of the total accumulated heating in the boundary layer and the sinusoidal function of the slope angle, while the temperature scale is proportional to the product of the boundary layer depth, the sinusoidal function of the slope angle and the potential temperature gradient in the free atmosphere. Using the new friction velocity parameterization, together with a parameterization of eddy diffusivity and an initial potential temperature profile around sunrise, an improved parameterization for the thermally induced upslope flow profile is derived by solving the Prandtl equations. The upslope flow profile is found to be simply proportional to the friction velocity.
文摘The change of temperature field on the friction facing during contact wearing for 3 wear-resistant alloys.Co-Cr-Ni-Si,Co-Cr-Mo and Co-Cr-W has been monitored by the infrared sensing thermography.Their flash temperature of the wearing area was measured.