期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Shear strength criteria for rock,rock joints,rockfill and rock masses:Problems and some solutions 被引量:43
1
作者 Nick Barton 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第4期249-261,共13页
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece... Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected. 展开更多
关键词 Rock masses Critical state Rock joints shear strength Non-linear friction Cohesion Dilation Scale effects Numerical modelling Stress transforms
下载PDF
Stability analysis of shallow tunnels subjected to eccentric loads by a boundary element method 被引量:6
2
作者 Mehdi Panji Hamid Koohsari +2 位作者 Mohammad Adampira Hamid Alielahi Jafar Asgari Marnani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第4期480-488,共9页
This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional be... This paper presents the results of the shear strength(frictional strength) of cemented paste backfillcemented paste backfill(CPB-CPB) and cemented paste backfillerock wall(CPB-rock) interfaces. The frictional behaviors of these interfaces were assessed for the short-term curing times(3 d and 7 d) using a direct shear apparatus RDS-200 from GCTS(Geotechnical Consulting & Testing Systems). The shear(friction) tests were performed at three different constant normal stress levels on flat and smooth interfaces. These tests aimed at understanding the mobilized shear strength at the CPB-rock and CPB-CPB interfaces during and/or after open stope filling(no exposed face). The applied normal stress levels were varied in a range corresponding to the usually measured in-situ horizontal pressures(longitudinal or transverse) developed within paste-filled stopes(uniaxial compressive strength, s c 150 k Pa). Results show that the mobilized shear strength is higher at the CPB-CPB interface than that at the CPB-rock interface. Also, the perfect elastoplastic behaviors observed for the CPB-rock interfaces were not observed for the CPB-CPB interfaces with low cement content which exhibits a strain-hardening behavior. These results are useful to estimate or validate numerical model for pressures determination in cemented backfill stope at short term. The tests were performed on real backfill and granite. The results may help understanding the mechanical behavior of the cemented paste backfill in general and, in particular, analyzing the shear strength at backfillebackfill and backfill-rock interfaces. 展开更多
关键词 Cemented paste backfill(CPB) shear tests Backfill-rock wall interface shear strength Adhesion Apparent cohesion Interface friction angle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部