Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. On...Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.展开更多
Effect of slope inclination on step friction coefficient of human being was studied by gait friction tester developed by Henan University of Science and Technology.It is beneficial to improving the safety of human bei...Effect of slope inclination on step friction coefficient of human being was studied by gait friction tester developed by Henan University of Science and Technology.It is beneficial to improving the safety of human beings while walking on a ramp.Based on the trajectory of mass center of body(MCOB)and the mechanical analysis of human body while walking,conclusion could be drawn that the required step frictional coefficient(RSFC)exhibited an"M"shaped curve during the foot contacting with the ground and got its maximum and minimum values when MCOB of the subject was at the highest and lowest position respectively.Moreover,the first peak of RSFC decreases firstly and then increases,while the second peak of RSFC increases with the increase of slope inclination at the experimental condition.The position of pivotal point is decided by the relative size of slope inclination and the angle between the plumb line through MCOB and the line from foot to MCOB.展开更多
The arc spraying technique was adopted to prepare three types of iron-based coatings including 08Mn2 Si,4Cr13,and 65 Mn.Meanwhile,the metallurgical microscope and scanning electron microscope(SEM)were used to analyz...The arc spraying technique was adopted to prepare three types of iron-based coatings including 08Mn2 Si,4Cr13,and 65 Mn.Meanwhile,the metallurgical microscope and scanning electron microscope(SEM)were used to analyze the microstructure of these coatings.Besides,a DPT-5dye penetrant was painted on the surface of the coatings to simulate the oil fluid,so as to observe its penetration in the pore structures.The MMU-5Gend-face hightemperature wear tester was used to carry out wear-resistance tests on these coatings and give comparison with grey cast irons.The experimental results showed that the 4Cr13 coating exhibited the best wear resistance under oil batch lubrication condition.According to the study of these coating structures,it was discovered that three coatings presented topology-like structures due to the accumulation of flat particles on the matrices.Meanwhile,it was found that zonal oxides were mixed in particles with some unmolten particles,pores,and cracks.Besides,the larger pores were mutually connected by gap-like pores.The existence of FeO in the coating and the pore structures keep oil in acted antifriction effects.展开更多
The methods used for flow characterization of a powder mass include the angle of repose (AOR), Carr index (CI), and powder flow tester (PFT). The use of nanosilica as a flow modifier (glidant) is very common i...The methods used for flow characterization of a powder mass include the angle of repose (AOR), Carr index (CI), and powder flow tester (PFT). The use of nanosilica as a flow modifier (glidant) is very common in industry. This study aims to compare the glidant effect of hydrophobic and hydrophilic silica on a poorly flowable active pharmaceutical ingredient (ibuprofen) by different flow characterization techniques. Different percentages (0.5, 1.0, and 2.0 wt%) of both types of mixed silica–ibuprofen powders were evaluated by the AOR, CI, bulk density, and PFT. The flow factor, effective angle of friction, and cohesion were determined to explain the bulk powder properties. The results show that different types of silica show different levels of flow property improvement, but the techniques do not equally discriminate the differences. Hydrophobic silica results in better improvement of the flow property than hydrophilic silica, probably because of its better surface coverage of silica on the host particles. Change of the bulk density with applied pressure was significant for the different powders. This study demonstrates that combining several characterization methods provides a better understanding of bulk powder flow properties with respect to powder–process relationships than a single flow indicator.展开更多
基金supported by National Basic Research Program of China(973 Program,Grant No. 2009CB724304)Key Research Program of the State Key Laboratory of Tribology of Tsinghua University,China (Grant No. SKLT08A06)National Natural Science Foundation of China(Grant No. 50975157)
文摘Elastohydrodynamic lubrication characteristics of hydraulic reciprocating seals have significant effects on sealing and tribology performances of hydraulic actuators, especially in high parameter hydraulic systems. Only elastic deformations of hydraulic reciprocating seals were discussed, and hydrodynamic effects were neglected in many studies. The physical process of the fluid-solid interaction effect did not be clearly presented in the existing fluid-solid interaction models for hydraulic reciprocating O-ring seals, and few of these models had been simultaneously validated through experiments. By exploring the physical process of the fluid-solid interaction effect of the hydraulic reciprocating O-ring seal, a numerical fluid-solid interaction model consisting of fluid lubrication, contact mechanics, asperity contact and elastic deformation analyses is constructed with an iterative procedure. With the SRV friction and wear tester, the experiments are performed to investigate the elastohydrodynamic lubrication characteristics of the O-ring seal. The regularity of the friction coefficient varying with the speed of reciprocating motion is obtained in the mixed lubrication condition. The experimental result is used to validate the fluid-solid interaction model. Based on the model, The elastohydrodynamic lubrication characteristics of the hydraulic reciprocating O-ring seal are presented respectively in the dry friction, mixed lubrication and full film lubrication conditions, including of the contact pressure, film thickness, friction coefficient, liquid film pressure and viscous shear stress in the sealing zone. The proposed numerical fluid-solid interaction model can be effectively used to analyze the operation characteristics of the hydraulic reciprocating O-ring seal, and can also be widely used to study other hydraulic reciprocating seals.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1034002 and 51175149)
文摘Effect of slope inclination on step friction coefficient of human being was studied by gait friction tester developed by Henan University of Science and Technology.It is beneficial to improving the safety of human beings while walking on a ramp.Based on the trajectory of mass center of body(MCOB)and the mechanical analysis of human body while walking,conclusion could be drawn that the required step frictional coefficient(RSFC)exhibited an"M"shaped curve during the foot contacting with the ground and got its maximum and minimum values when MCOB of the subject was at the highest and lowest position respectively.Moreover,the first peak of RSFC decreases firstly and then increases,while the second peak of RSFC increases with the increase of slope inclination at the experimental condition.The position of pivotal point is decided by the relative size of slope inclination and the angle between the plumb line through MCOB and the line from foot to MCOB.
基金Item Sponsored by National Natural Science Foundation of China(51301112)Science Research Program of Education Department of Liaoning Province of China(L2014048)
文摘The arc spraying technique was adopted to prepare three types of iron-based coatings including 08Mn2 Si,4Cr13,and 65 Mn.Meanwhile,the metallurgical microscope and scanning electron microscope(SEM)were used to analyze the microstructure of these coatings.Besides,a DPT-5dye penetrant was painted on the surface of the coatings to simulate the oil fluid,so as to observe its penetration in the pore structures.The MMU-5Gend-face hightemperature wear tester was used to carry out wear-resistance tests on these coatings and give comparison with grey cast irons.The experimental results showed that the 4Cr13 coating exhibited the best wear resistance under oil batch lubrication condition.According to the study of these coating structures,it was discovered that three coatings presented topology-like structures due to the accumulation of flat particles on the matrices.Meanwhile,it was found that zonal oxides were mixed in particles with some unmolten particles,pores,and cracks.Besides,the larger pores were mutually connected by gap-like pores.The existence of FeO in the coating and the pore structures keep oil in acted antifriction effects.
文摘The methods used for flow characterization of a powder mass include the angle of repose (AOR), Carr index (CI), and powder flow tester (PFT). The use of nanosilica as a flow modifier (glidant) is very common in industry. This study aims to compare the glidant effect of hydrophobic and hydrophilic silica on a poorly flowable active pharmaceutical ingredient (ibuprofen) by different flow characterization techniques. Different percentages (0.5, 1.0, and 2.0 wt%) of both types of mixed silica–ibuprofen powders were evaluated by the AOR, CI, bulk density, and PFT. The flow factor, effective angle of friction, and cohesion were determined to explain the bulk powder properties. The results show that different types of silica show different levels of flow property improvement, but the techniques do not equally discriminate the differences. Hydrophobic silica results in better improvement of the flow property than hydrophilic silica, probably because of its better surface coverage of silica on the host particles. Change of the bulk density with applied pressure was significant for the different powders. This study demonstrates that combining several characterization methods provides a better understanding of bulk powder flow properties with respect to powder–process relationships than a single flow indicator.