为提高泵前过滤器自清洗性能,解决过滤系统频繁中断问题,该研究将阿基米德螺旋转轮应用于泵前过滤器自清洗过程,通过数值仿真与物理试验,结合相关性分析和线性回归分析,探究叶片螺距、叶片角度、叶片数量对阿基米德螺旋转轮转速的影响...为提高泵前过滤器自清洗性能,解决过滤系统频繁中断问题,该研究将阿基米德螺旋转轮应用于泵前过滤器自清洗过程,通过数值仿真与物理试验,结合相关性分析和线性回归分析,探究叶片螺距、叶片角度、叶片数量对阿基米德螺旋转轮转速的影响规律。结果表明:转轮转速随螺距的增加逐渐下降,且降低幅度逐渐上升,随叶片角度和叶片数量的增加转轮转速的提升较小且提升幅度不断减小,对转轮转速影响程度由大到小为螺距、叶片角度和叶片数量。通过TOPSIS法(technique for order preference by similarity to an ideal solution)综合评价得到最佳结构参数组合为:螺距133 mm,叶片角度90°,叶片数量1。优化后水驱式自清洗泵前过滤器开展自清洗试验,结果显示流量经过最初下降阶段后稳定在294.9~296.6 m^(3)/h区间,流量降幅仅为1.13%~1.70%,利用水力驱动阿基米德螺旋转轮带动自清洗装置的滤网清洗效果良好。研究结果可为水驱式自清洗泵前过滤器的结构设计和优化提供参考。展开更多
During the 25th Chinese National Antarctic Research Expedition, GPS radiosondes were launched to detect the atmos- pheric vertical structure over the southeast Indian Ocean frontal region. Some low-level characteristi...During the 25th Chinese National Antarctic Research Expedition, GPS radiosondes were launched to detect the atmos- pheric vertical structure over the southeast Indian Ocean frontal region. Some low-level characteristics along the cruise are studied based on in-situ observation. The observations reveal that vertical distributions of the low-level wind field and air temperature field on both sides of the Subantarctic Front are very different. A stronger (weaker) vertical gradient is on the cold (warm) side, which demonstrates that the mid-latitude ocean-atmosphere interaction is active in the southeast Indian Ocean frontal region. A low-level jet is observed over the Subantarctic Front, with speed up to 14 m's-1. For the Antarctic polar front, low-level wind speed near the sea surface is greater than that aloft, in contrast with the situation of the Subantarctic Front. Comparing satellite remote sensing data and widely-used reanalysis datasets with our in-situ observations, differences of varying magnitudes are found. Air temperature from Atmospheric Infrared Sounder (AIRS) data has a limited difference. The European Center for Medium Range Weather Forecasts Interim Re-Analysis (ERA Interim) dataset is much more consistent with the observations than the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 in the southeast Indian Ocean frontal region.展开更多
文摘为提高泵前过滤器自清洗性能,解决过滤系统频繁中断问题,该研究将阿基米德螺旋转轮应用于泵前过滤器自清洗过程,通过数值仿真与物理试验,结合相关性分析和线性回归分析,探究叶片螺距、叶片角度、叶片数量对阿基米德螺旋转轮转速的影响规律。结果表明:转轮转速随螺距的增加逐渐下降,且降低幅度逐渐上升,随叶片角度和叶片数量的增加转轮转速的提升较小且提升幅度不断减小,对转轮转速影响程度由大到小为螺距、叶片角度和叶片数量。通过TOPSIS法(technique for order preference by similarity to an ideal solution)综合评价得到最佳结构参数组合为:螺距133 mm,叶片角度90°,叶片数量1。优化后水驱式自清洗泵前过滤器开展自清洗试验,结果显示流量经过最初下降阶段后稳定在294.9~296.6 m^(3)/h区间,流量降幅仅为1.13%~1.70%,利用水力驱动阿基米德螺旋转轮带动自清洗装置的滤网清洗效果良好。研究结果可为水驱式自清洗泵前过滤器的结构设计和优化提供参考。
基金supported by the National Program on Key Basic Program,Research Program of China(973 Program,Grant nos.2010CB950304 and 2012CB955601)SOA Science Fund for Young Scholars(Grant no.2011244)+2 种基金the Chinese Polar Strategy Fund(Grant no.20072017)the Chinese Polar Investigation Fund(Grant no.CHINARE 2012-01-01)the International Cooperation Fund(Grant no.JD201002)
文摘During the 25th Chinese National Antarctic Research Expedition, GPS radiosondes were launched to detect the atmos- pheric vertical structure over the southeast Indian Ocean frontal region. Some low-level characteristics along the cruise are studied based on in-situ observation. The observations reveal that vertical distributions of the low-level wind field and air temperature field on both sides of the Subantarctic Front are very different. A stronger (weaker) vertical gradient is on the cold (warm) side, which demonstrates that the mid-latitude ocean-atmosphere interaction is active in the southeast Indian Ocean frontal region. A low-level jet is observed over the Subantarctic Front, with speed up to 14 m's-1. For the Antarctic polar front, low-level wind speed near the sea surface is greater than that aloft, in contrast with the situation of the Subantarctic Front. Comparing satellite remote sensing data and widely-used reanalysis datasets with our in-situ observations, differences of varying magnitudes are found. Air temperature from Atmospheric Infrared Sounder (AIRS) data has a limited difference. The European Center for Medium Range Weather Forecasts Interim Re-Analysis (ERA Interim) dataset is much more consistent with the observations than the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 in the southeast Indian Ocean frontal region.