Pressure applied on the top roller of drafting zone is a vital factor on which the quality of ultimate yarn depends. Drafting zone is needed to reduce the mass per unit length of input material. Appropriate contact of...Pressure applied on the top roller of drafting zone is a vital factor on which the quality of ultimate yarn depends. Drafting zone is needed to reduce the mass per unit length of input material. Appropriate contact of top rollers with bottom rollers is necessary to ensure proper drafting. In this paper, the effects of different front top roller pressure of drafting zone on the quality of 20Ne cotton-flax blended yarns (C:L = 45:55) were studied. It was observed that a higher pressure value gives a lower co-efficient of mass variation, imperfections, hairiness and higher evenness, tenacity, elongation properties.展开更多
Pore pressure(PP)information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development.PP prediction is an essential requirement to ensure safe drilling opera...Pore pressure(PP)information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development.PP prediction is an essential requirement to ensure safe drilling operations and it is a fundamental input for well design,and mud weight estimation for wellbore stability.However,the pore pressure trend prediction in complex geological provinces is challenging particularly at oceanic slope setting,where sedimentation rate is relatively high and PP can be driven by various complex geo-processes.To overcome these difficulties,an advanced machine learning(ML)tool is implemented in combination with empirical methods.The empirical method for PP prediction is comprised of data pre-processing and model establishment stage.Eaton's method and Porosity method have been used for PP calculation of the well U1517A located at Tuaheni Landslide Complex of Hikurangi Subduction zone of IODP expedition 372.Gamma-ray,sonic travel time,bulk density and sonic derived porosity are extracted from well log data for the theoretical framework construction.The normal compaction trend(NCT)curve analysis is used to check the optimum fitting of the low permeable zone data.The statistical analysis is done using the histogram analysis and Pearson correlation coefficient matrix with PP data series to identify potential input combinations for ML-based predictive model development.The dataset is prepared and divided into two parts:Training and Testing.The PP data and well log of borehole U1517A is pre-processed to scale in between[-1,+1]to fit into the input range of the non-linear activation/transfer function of the decision tree regression model.The Decision Tree Regression(DTR)algorithm is built and compared to the model performance to predict the PP and identify the overpressure zone in Hikurangi Tuaheni Zone of IODP Expedition 372.展开更多
The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitiou...The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.展开更多
The pressure distribution on the grip zones in the CONFORM process has been analysed by means of the slab method, and from the above results the forces applied to the shoe were derived. It is shown that the pressure ...The pressure distribution on the grip zones in the CONFORM process has been analysed by means of the slab method, and from the above results the forces applied to the shoe were derived. It is shown that the pressure along the segment increases powerfully with θ increasing in the primary grip, and increases linearly with θ increasing in the extrusion grip. Thus, it can offer mechanics parameters for the operating techniques and CONFORM machine design.展开更多
Cultivated land pressure represents a direct reflection of grain security. Existing relevant studies rarely approached the spatiotemporal pattern of cultivated land pressure or the spatial heterogeneity of its influen...Cultivated land pressure represents a direct reflection of grain security. Existing relevant studies rarely approached the spatiotemporal pattern of cultivated land pressure or the spatial heterogeneity of its influencing factors from the level of economic zones.Taking the Huaihai Economic Zone(HEZ), China for case analysis, this study investigated the spatiotemporal pattern of cultivated land pressure in diverse periods from 2000 to 2018 based on a modified cultivated land pressure index and spatial correlation models. On this basis, it explored the influencing factors of the spatial differentiation of cultivated land pressure in the late stage of the study using geographical detector as well as multi-scale geographically weighted regression model. The results indicated that: 1) in the study period, the global cultivated land pressure index of the study area decreased gradually, but cultivated land pressure increased locally in a significant way, especially in the central and southern Shandong Province;2) the spatial pattern of cultivated land pressure manifested global clustering features. Hot and secondary-hot spots presented a narrowing and clustering trend, whereas cold and secondary-cold spots manifested a spreading and clustering trend;3) average slope, the proportion of non-grain crops, population urbanization rate, and multiple cropping index have significant effects on the spatial differentiation of cultivated land pressure. The former three factors were positively correlated with cultivated land pressure, and the last factor was negatively correlated with cultivated land pressure;and 4) the amount of cultivated land has increased in the central and southern Shandong Province through land consolidation which, nonetheless, failed to improve the grain production. In regards to major grain producing areas similar to the HEZ in China, the authors suggest that great importance should be given to the balance of the quality and quantity of cultivated land, the optimization of agricultural production factors and the rational control of non-grain crops, thus providing a powerful guarantee for grain security in China.展开更多
The housing crisis in Ireland has rapidly grown in recent years. To make a more significant profit, many landlords are no longer renting out their houses under long-term tenancies but under short-term tenancies. Regul...The housing crisis in Ireland has rapidly grown in recent years. To make a more significant profit, many landlords are no longer renting out their houses under long-term tenancies but under short-term tenancies. Regulating rentals in Rent Pressure Zones with the highest and rising rents is becoming a tricky issue. In this paper, we develop a breach identifier to check short-term rentals located in Rent Pressure Zones with potential breaches only using publicly available data from Airbnb (an online marketplace focused on short-term home-stays) and Irish government websites. First, we use a Residual Neural Network to filter out outdoor landscape photos that negatively impact identifying whether an owner has multiple rentals in a Rent Pressure Zone. Second, a Siamese Neural Network is used to compare the similarity of indoor photos to determine if multiple rental posts correspond to the same residence. Next, we use the Haversine algorithm to locate short-term rentals within a circle centered on the coordinate of a permit. Short-term rentals with a permit will not be restricted. Finally, we improve the occupancy estimation model combined with sentiment analysis, which may provide higher accuracy.展开更多
Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affec...Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affect the determination of gas content is unclear due to borehole zoning rupture caused by roadway excavation and drilling disturbance. To this end, a proposed coupling model of stress distribution and gas migration was simulated and validated by FLAC^(3D) and COMSOL Multiphysics considering superposition effects of roadway excavation and drilling disturbance. The findings indicate that the roadway surrounding rock displays distinct zoning features including stress relief zone, stress concentration zone that is composed of plastic zone, elastic zone, and original stress zone;and the broken situations depending on the borehole peeping are consistent with the corresponding simulation results.On this basis, this study proposes a set of drilling coring depth calculation and prediction model for the gas desorption affected area under engineering disturbance. Optimal depth of coring drilling is not only approach to the in-situ coal bulk, but also can get the balance of the drilling workload and cost controlling. According to the typical mine site geological conditions and the numerical simulation results in this study, if the roadway excavation time is ~1 year, it is recommended that the pressure-preserved coring depth should be greater than 17 m.展开更多
The research into the hydrostatic pressure in the crust has been previously conducted from the viewpoint that the hydrostatic pressure is equal to the gravity, based on the fact that the hydrostatic pressure is derive...The research into the hydrostatic pressure in the crust has been previously conducted from the viewpoint that the hydrostatic pressure is equal to the gravity, based on the fact that the hydrostatic pressure is derived mainly from the gravity of its overlying rocks. In this paper, the stress state of any point in the crust is suggested to have been caused by both the gravity and the tectonic force. The author proposes that the hydrostatic pressure is a combination or superposition of two isotropic stresses in the tectonic force and gravity stress fields. The results obtained with a finite element simulation indicate that the additional hydrostatic pressure borne by rocks decreases gradually from the compression zone ( p s c), the shear zone ( p s sh ) to the tensile zone ( p s t), and that the difference in the additional tectonic hydrostatic pressure between these deformed zones tends to increase, following the increase in the absolute value and/or the difference in external forces between different directions. This paper presents the foundation for the research into the tectonic physicochemistry.展开更多
In order to understand the change rules of stress-displacement in surrounding rocks of dynamic pressure roadways in deep mines and to obtain a theoretical basis for analyses of roadway stability and designs of support...In order to understand the change rules of stress-displacement in surrounding rocks of dynamic pressure roadways in deep mines and to obtain a theoretical basis for analyses of roadway stability and designs of support, we established a coupling equation of adjacent rock strength, mining stress and supporting resistance on the basis of an elastic-plastic theory of mechanics. We obtained an analytical solution for stress and displacement distribution of elastic and plastic regions in surrounding rock of dy-namic pressure roadway.. Based on this theory, we have analyzed the changes in stress-displacement in elastic and plastic regions of surrounding rocks of dynamic pressure roadways in the Haizi Coal Mine. The results show that: 1) radial and tangential stress change violently within the first 4 m from the inner surface of a roadway after excavation; radial stress increases while tangential stress decreases within a range of about 6 m from the inner surface of the roadway as a function of q3; 2) radial and tangential stress increase with an increase in the mining pressure coefficient k; the increase in the rate of tangential stress is greater than that of ra-dial stress; 3) the radial displacement of the inner surface of roadways decreases with an increase in q3, provided that k remains unchanged.展开更多
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the different...The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.展开更多
Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been form...Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been formed in a long geological period, and in this period, various rocks have undergone long-term consolidation of geostatic stress and tectonic stress; therefore, under in-situ conditions, their density and modulus of deformation are relatively high. Due to its fragmentary nature, once being exposed to the earth's surface, the structure of weak rock zone will soon be loosened, its density will be reduced, and its modulus of deformation will also be reduced significantly. Generally, weak rock zone can be found in large construction projects, especially in the dam foundation rocks of hydropower stations. These rocks cannot be eliminated completely by excavation. Furthermore, all tests nowadays are carried out after the exposure of weak rock zone, modulus of deformation under in-situ conditions cannot be revealed. In this paper, a test method explored by the authors has been introduced. This method is a whole multilayered medium deformation method. It is unnecessary to eliminate the relatively complete rocks covering on weak rock zone. A theoretical formula to obtain the modulus of deformation in various mediums has also been introduced. On-site comparative trials and indoor deformation modulus tests under equivalent density conditions have been carried out. We adopted several methods for the prediction researches of the deformation modulus of weak rock zone under in-situ conditions, and revealed a fact that under in-situ conditions, the deformation modulus of weak rock zone are several times higher than the test results obtained after the exposure. In a perspective of geological engineering, the research findings have fundamentally changed peoples' concepts on the deformation modulus of weak rock zone, provided important theories and methods for precise definition of deformation modulus of deep weak rock zone under cap rock conditions, as well as for reasonable engineering applications.展开更多
The site drilling packer permeability test and TEM to the 2100 workface in Gucheng coalmine determined the two-zone height under sublevel strip mining.The conclusion considers that the lying strata deterioration law o...The site drilling packer permeability test and TEM to the 2100 workface in Gucheng coalmine determined the two-zone height under sublevel strip mining.The conclusion considers that the lying strata deterioration law of the strip mining is similar to that of the sublevel mining.Thus, against that the actually measured data lacked, it is feasible to refer to the reservation of the waterproof coal pillar in the neighbor coalmine under sublevel situation.However, it is necessary to further launch the research on lying strata deterioration law under sublevel striping mining for the purpose of providing the right foundation for the layout of the workface not mined so far and the reservation of the waterproof coal pillar in the mining area.展开更多
Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distin...Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distinct rock types.Generally,these methods are applied to petrophysical data that are measured at a pressure other than reservoir pressure.Since the pressure changes the pore structure of rock,the effect of overburden pressure on rock typing should be considered.In this study,porosity and permeability of 113 core samples were measured at five different pressures.To investigate the effect of pressure on determination of rock types,FZI,FZI~*and Winland methods were applied.Results indicated that although most of the samples remain in the same rock type when pressure changes,some of them show different trends.These are related to the mineralogy and changes in pore system of the samples due to pressure change.Additionally,the number of rock types increases with increasing pressure.Furthermore,the effect of overburden pressure on determination of rock types is more clearly observed in the Winland and FZI~*methods.Also,results revealed that a more precise reservoir dynamic simulation can be obtained by considering the reservoir rock typing process at reservoir conditions.展开更多
A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is u...A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.展开更多
文摘Pressure applied on the top roller of drafting zone is a vital factor on which the quality of ultimate yarn depends. Drafting zone is needed to reduce the mass per unit length of input material. Appropriate contact of top rollers with bottom rollers is necessary to ensure proper drafting. In this paper, the effects of different front top roller pressure of drafting zone on the quality of 20Ne cotton-flax blended yarns (C:L = 45:55) were studied. It was observed that a higher pressure value gives a lower co-efficient of mass variation, imperfections, hairiness and higher evenness, tenacity, elongation properties.
文摘Pore pressure(PP)information plays an important role in analysing the geomechanical properties of the reservoir and hydrocarbon field development.PP prediction is an essential requirement to ensure safe drilling operations and it is a fundamental input for well design,and mud weight estimation for wellbore stability.However,the pore pressure trend prediction in complex geological provinces is challenging particularly at oceanic slope setting,where sedimentation rate is relatively high and PP can be driven by various complex geo-processes.To overcome these difficulties,an advanced machine learning(ML)tool is implemented in combination with empirical methods.The empirical method for PP prediction is comprised of data pre-processing and model establishment stage.Eaton's method and Porosity method have been used for PP calculation of the well U1517A located at Tuaheni Landslide Complex of Hikurangi Subduction zone of IODP expedition 372.Gamma-ray,sonic travel time,bulk density and sonic derived porosity are extracted from well log data for the theoretical framework construction.The normal compaction trend(NCT)curve analysis is used to check the optimum fitting of the low permeable zone data.The statistical analysis is done using the histogram analysis and Pearson correlation coefficient matrix with PP data series to identify potential input combinations for ML-based predictive model development.The dataset is prepared and divided into two parts:Training and Testing.The PP data and well log of borehole U1517A is pre-processed to scale in between[-1,+1]to fit into the input range of the non-linear activation/transfer function of the decision tree regression model.The Decision Tree Regression(DTR)algorithm is built and compared to the model performance to predict the PP and identify the overpressure zone in Hikurangi Tuaheni Zone of IODP Expedition 372.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC)Lakehead University for their financial support。
文摘The mesoscale fiber-matrix interfacial transition zone(FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites(FRCCs). This critical review establishes the link among induced curing pressure(i.e., external loading condition), multiphysics processes(i.e., internal governing mechanism), and interface behavior(i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FMITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.
文摘The pressure distribution on the grip zones in the CONFORM process has been analysed by means of the slab method, and from the above results the forces applied to the shoe were derived. It is shown that the pressure along the segment increases powerfully with θ increasing in the primary grip, and increases linearly with θ increasing in the extrusion grip. Thus, it can offer mechanics parameters for the operating techniques and CONFORM machine design.
基金Under the auspices of National Natural Science Foundation of China (No.42071229,41671174)Priority Academic Program Development of Jiangsu Higher Education Institutions (No.164320H116)。
文摘Cultivated land pressure represents a direct reflection of grain security. Existing relevant studies rarely approached the spatiotemporal pattern of cultivated land pressure or the spatial heterogeneity of its influencing factors from the level of economic zones.Taking the Huaihai Economic Zone(HEZ), China for case analysis, this study investigated the spatiotemporal pattern of cultivated land pressure in diverse periods from 2000 to 2018 based on a modified cultivated land pressure index and spatial correlation models. On this basis, it explored the influencing factors of the spatial differentiation of cultivated land pressure in the late stage of the study using geographical detector as well as multi-scale geographically weighted regression model. The results indicated that: 1) in the study period, the global cultivated land pressure index of the study area decreased gradually, but cultivated land pressure increased locally in a significant way, especially in the central and southern Shandong Province;2) the spatial pattern of cultivated land pressure manifested global clustering features. Hot and secondary-hot spots presented a narrowing and clustering trend, whereas cold and secondary-cold spots manifested a spreading and clustering trend;3) average slope, the proportion of non-grain crops, population urbanization rate, and multiple cropping index have significant effects on the spatial differentiation of cultivated land pressure. The former three factors were positively correlated with cultivated land pressure, and the last factor was negatively correlated with cultivated land pressure;and 4) the amount of cultivated land has increased in the central and southern Shandong Province through land consolidation which, nonetheless, failed to improve the grain production. In regards to major grain producing areas similar to the HEZ in China, the authors suggest that great importance should be given to the balance of the quality and quantity of cultivated land, the optimization of agricultural production factors and the rational control of non-grain crops, thus providing a powerful guarantee for grain security in China.
文摘The housing crisis in Ireland has rapidly grown in recent years. To make a more significant profit, many landlords are no longer renting out their houses under long-term tenancies but under short-term tenancies. Regulating rentals in Rent Pressure Zones with the highest and rising rents is becoming a tricky issue. In this paper, we develop a breach identifier to check short-term rentals located in Rent Pressure Zones with potential breaches only using publicly available data from Airbnb (an online marketplace focused on short-term home-stays) and Irish government websites. First, we use a Residual Neural Network to filter out outdoor landscape photos that negatively impact identifying whether an owner has multiple rentals in a Rent Pressure Zone. Second, a Siamese Neural Network is used to compare the similarity of indoor photos to determine if multiple rental posts correspond to the same residence. Next, we use the Haversine algorithm to locate short-term rentals within a circle centered on the coordinate of a permit. Short-term rentals with a permit will not be restricted. Finally, we improve the occupancy estimation model combined with sentiment analysis, which may provide higher accuracy.
基金supported by National Natural Science Foundation of China (Nos. 51827901, 52104096)the Shenzhen National Science Fund for Distinguished Young Scholars (No. RCJC20210706091948015)+2 种基金Open Fund of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (No. SKHL2216)National Key R & D Program of China (No. 2022YFB3706605)Youth Foundation of Sichuan Natural Science Foundation (No. 2023NSFSC0780)。
文摘Using pressure-preserved coring technique to determine in-situ gas content provides a more precise assessment of gas resource reserves and safeguard of mining safety in coal seams. How coring technique and depth affect the determination of gas content is unclear due to borehole zoning rupture caused by roadway excavation and drilling disturbance. To this end, a proposed coupling model of stress distribution and gas migration was simulated and validated by FLAC^(3D) and COMSOL Multiphysics considering superposition effects of roadway excavation and drilling disturbance. The findings indicate that the roadway surrounding rock displays distinct zoning features including stress relief zone, stress concentration zone that is composed of plastic zone, elastic zone, and original stress zone;and the broken situations depending on the borehole peeping are consistent with the corresponding simulation results.On this basis, this study proposes a set of drilling coring depth calculation and prediction model for the gas desorption affected area under engineering disturbance. Optimal depth of coring drilling is not only approach to the in-situ coal bulk, but also can get the balance of the drilling workload and cost controlling. According to the typical mine site geological conditions and the numerical simulation results in this study, if the roadway excavation time is ~1 year, it is recommended that the pressure-preserved coring depth should be greater than 17 m.
文摘The research into the hydrostatic pressure in the crust has been previously conducted from the viewpoint that the hydrostatic pressure is equal to the gravity, based on the fact that the hydrostatic pressure is derived mainly from the gravity of its overlying rocks. In this paper, the stress state of any point in the crust is suggested to have been caused by both the gravity and the tectonic force. The author proposes that the hydrostatic pressure is a combination or superposition of two isotropic stresses in the tectonic force and gravity stress fields. The results obtained with a finite element simulation indicate that the additional hydrostatic pressure borne by rocks decreases gradually from the compression zone ( p s c), the shear zone ( p s sh ) to the tensile zone ( p s t), and that the difference in the additional tectonic hydrostatic pressure between these deformed zones tends to increase, following the increase in the absolute value and/or the difference in external forces between different directions. This paper presents the foundation for the research into the tectonic physicochemistry.
基金supported by the National Natural Science Foundation of China (No50874103)the National Basic Research Program of China (No2006 CB202210)the Natural Science Foundation of Jiangsu Province (NoKB2008135)
文摘In order to understand the change rules of stress-displacement in surrounding rocks of dynamic pressure roadways in deep mines and to obtain a theoretical basis for analyses of roadway stability and designs of support, we established a coupling equation of adjacent rock strength, mining stress and supporting resistance on the basis of an elastic-plastic theory of mechanics. We obtained an analytical solution for stress and displacement distribution of elastic and plastic regions in surrounding rock of dy-namic pressure roadway.. Based on this theory, we have analyzed the changes in stress-displacement in elastic and plastic regions of surrounding rocks of dynamic pressure roadways in the Haizi Coal Mine. The results show that: 1) radial and tangential stress change violently within the first 4 m from the inner surface of a roadway after excavation; radial stress increases while tangential stress decreases within a range of about 6 m from the inner surface of the roadway as a function of q3; 2) radial and tangential stress increase with an increase in the mining pressure coefficient k; the increase in the rate of tangential stress is greater than that of ra-dial stress; 3) the radial displacement of the inner surface of roadways decreases with an increase in q3, provided that k remains unchanged.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
文摘The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.
文摘Weak rock zone (soft interlayer, fault zone and soft rock) is the highlight of large-scale geological engineering research. It is an important boundary for analysis of rock mass stability. Weak rock zone has been formed in a long geological period, and in this period, various rocks have undergone long-term consolidation of geostatic stress and tectonic stress; therefore, under in-situ conditions, their density and modulus of deformation are relatively high. Due to its fragmentary nature, once being exposed to the earth's surface, the structure of weak rock zone will soon be loosened, its density will be reduced, and its modulus of deformation will also be reduced significantly. Generally, weak rock zone can be found in large construction projects, especially in the dam foundation rocks of hydropower stations. These rocks cannot be eliminated completely by excavation. Furthermore, all tests nowadays are carried out after the exposure of weak rock zone, modulus of deformation under in-situ conditions cannot be revealed. In this paper, a test method explored by the authors has been introduced. This method is a whole multilayered medium deformation method. It is unnecessary to eliminate the relatively complete rocks covering on weak rock zone. A theoretical formula to obtain the modulus of deformation in various mediums has also been introduced. On-site comparative trials and indoor deformation modulus tests under equivalent density conditions have been carried out. We adopted several methods for the prediction researches of the deformation modulus of weak rock zone under in-situ conditions, and revealed a fact that under in-situ conditions, the deformation modulus of weak rock zone are several times higher than the test results obtained after the exposure. In a perspective of geological engineering, the research findings have fundamentally changed peoples' concepts on the deformation modulus of weak rock zone, provided important theories and methods for precise definition of deformation modulus of deep weak rock zone under cap rock conditions, as well as for reasonable engineering applications.
基金Supported by Fujian Administration of Education for Science Research (JB08232)the State Key Development Program for Basic Research of China(2006CB202200)
文摘The site drilling packer permeability test and TEM to the 2100 workface in Gucheng coalmine determined the two-zone height under sublevel strip mining.The conclusion considers that the lying strata deterioration law of the strip mining is similar to that of the sublevel mining.Thus, against that the actually measured data lacked, it is feasible to refer to the reservation of the waterproof coal pillar in the neighbor coalmine under sublevel situation.However, it is necessary to further launch the research on lying strata deterioration law under sublevel striping mining for the purpose of providing the right foundation for the layout of the workface not mined so far and the reservation of the waterproof coal pillar in the mining area.
文摘Rock typing is an important tool in evaluation and performance prediction of reservoirs.Different techniques such as flow zone indicator(FZI),FZI~*and Winland methods are used to categorize reservoir rocks into distinct rock types.Generally,these methods are applied to petrophysical data that are measured at a pressure other than reservoir pressure.Since the pressure changes the pore structure of rock,the effect of overburden pressure on rock typing should be considered.In this study,porosity and permeability of 113 core samples were measured at five different pressures.To investigate the effect of pressure on determination of rock types,FZI,FZI~*and Winland methods were applied.Results indicated that although most of the samples remain in the same rock type when pressure changes,some of them show different trends.These are related to the mineralogy and changes in pore system of the samples due to pressure change.Additionally,the number of rock types increases with increasing pressure.Furthermore,the effect of overburden pressure on determination of rock types is more clearly observed in the Winland and FZI~*methods.Also,results revealed that a more precise reservoir dynamic simulation can be obtained by considering the reservoir rock typing process at reservoir conditions.
基金This work was supported by the Key Laboratory of Safety and High-Efficiency Coal Mining,Ministry of Education,Anhui University of Science and Technology(JYBSYS2020209)the Natural Science Research Project of Anhui Provincial Department of Education(KJHS2020B13)the Huangshan University School Level Talent Launch Project(No.2020XKJQ001).
文摘A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM(Soil-Rock Mixture)sample with rock block proportions of 20%,30%,40%,50%,60%and 70%,respectively.A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient.The test results show that:(1)The permeability coefficient of the S-RM samples decreases as the pressure increases,and the decrease rate of this coefficient in the initial stage of confining pressure loading is obviously higher than in the semi-late period;(2)The permeability coefficient at different confining pressure levels presents a common trend as the rock block proportion is increased,i.e.,it decreases first then it increases(the permeability coefficient of the sample with rock block proportion 40%being the smallest,70%the largest);(3)In the stage of confining pressure unloading,the recovery degree of the permeability coefficient grows with the increase of rock block proportion(the recovery rate of S-RM sample with rock block proportion 70%reaches 50.2%);(4)In the stage of confining pressure loading and unloading,the sensitivity of the permeability coefficient to the rock block proportion displays the inverse“Z”variation rule(when rock block proportion reaches 60%,the sensitivity is highest);(5)In the stage of confining pressure loading,the relationship between the permeability coefficient and confining pressure can be described by an exponential relationship.