The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly co...The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.展开更多
The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID det...The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.展开更多
With the development of silicon photomultiplier(SiPM)technology,front-end electronics for SiPM signal processing have been highly sought after in various fields.A compact 64-channel front-end electronics(FEE)system ac...With the development of silicon photomultiplier(SiPM)technology,front-end electronics for SiPM signal processing have been highly sought after in various fields.A compact 64-channel front-end electronics(FEE)system achieved by fieldprogrammable gate array-based charge-to-digital converter(FPGA-QDC)technology was built and developed.The FEE consists of an analog board and FPGA board.The analog board incorporates commercial amplifiers,resistors,and capacitors.The FPGA board is composed of a low-cost FPGA.The electronics performance of the FEE was evaluated in terms of noise,linearity,and uniformity.A positron emission tomography(PET)detector with three different readout configurations was designed to validate the readout capability of the FEE for SiPM-based detectors.The PET detector was made of a 15×15 lutetium–yttrium oxyorthosilicate(LYSO)crystal array directly coupled with a SiPM array detector.The experimental results show that FEE can process dual-polarity charge signals from the SiPM detectors.In addition,it shows a good energy resolution for 511-keV gamma photons under the dual-end readout for the LYSO crystal array irradiated by a Na-22 source.Overall,the FEE based on FPGA-QDC shows promise for application in SiPM-based radiation detectors.展开更多
In this paper, the design of a novel low-noise front-end readout circuit for Cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors is described. The front-end readout circuits include the charge sensitive amplifi...In this paper, the design of a novel low-noise front-end readout circuit for Cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors is described. The front-end readout circuits include the charge sensitive amplifier (CSA) and the CR-RC shaper is implemented in TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 4.9 mm × 2.2 mm. The simulation results show that, the noise performance is 46 electrons + 10 electrons/pF, and power consumption is 1.65 mW per channel.展开更多
The architecture of a multi-channel front-end system is important for realizing a high-resolution PET system. We propose a novel front-end readout electronic system with TDC to deal with time information for PET syste...The architecture of a multi-channel front-end system is important for realizing a high-resolution PET system. We propose a novel front-end readout electronic system with TDC to deal with time information for PET system which can easily design the timing control. Each channel consists of a charge preamplifier, slow/fast shaper, discriminator and an analog memory. There are an ADC and a TDC to process the energy information and time information for each channel at the same time. In this paper, the whole system signals flow is all simulated by MATLAB. The simulation results show that the proposed system can process slender current from the detector and achieve the energy and time information. The proposed architecture can be applied to high-resolution PET imaging systems with multi-channel ASICs.展开更多
The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approx...The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approximately~1 mW/channel.Owing to its dual-path gain,the BETA chip is capable of resolving single photoelectrons(phes)with a signal-to-noise ratio(SNR)>5 while simultaneously achieving a dynamic range of~4000 phes.Thus,BETA can provide a cost-effective solution for the readout of SiPMs in space missions and other applications with a maximum rate below 10 kHz.In this study,we describe the key characteristics of the BETA ASIC and present an evaluation of the performance of its 16-channel version,which is implemented using 130 nm technology.The ASIC also contains two discriminators that can provide trigger signals with a time jitter down to 400 ps FWHM for 10 phes.The linearity error of the charge gain measurement was less than 2%for a dynamic range as large as 15 bits.展开更多
Front-end readout electronics have been developed for silicon strip detectors at our institute. In this system an Application Specific Integrated Circuit (ASIC) ATHED is used to realize multi-channel energy and time...Front-end readout electronics have been developed for silicon strip detectors at our institute. In this system an Application Specific Integrated Circuit (ASIC) ATHED is used to realize multi-channel energy and time measurements. The slow control of ASIC chips is achieved by parallel port and the timing control signals of ASIC chips are implemented with the CPLD. The data acquisition is carried out with a PXI-DAQ card. The software has a user-friendly GUI developed with LabWindows/CVI in the Windows XP operating system. The test results show that the energy resolution is about 1.14% for alpha at 5.48 MeV and the maximum channel crosstalk of the system is 4.60%. The performance of the system is very reliable and is suitable for nuclear physics experiments.展开更多
There is an urgent need for high-quality and high-frequency clock generators for high-energy physics experiments.The transmission data rate exceeds 10 Gbps for a single channel in future readout electronics of silicon...There is an urgent need for high-quality and high-frequency clock generators for high-energy physics experiments.The transmission data rate exceeds 10 Gbps for a single channel in future readout electronics of silicon pixel detectors.Others,such as time measurement detectors,require a high time resolution based on the time-to-digital readout architecture.A phase-locked loop(PLL)is an essential and broadly used circuit in these applications.This study presents an application-specific integrated circuit of a low-jitter,low-power LC-tank that is PLL fabricated using 55-nm CMOS technology.It includes a 3rd-order frequency synthesis loop with a programmable bandwidth,a divide-by-2 pre-scaler,standard low-voltage differential signaling interfaces,and a current mode logic(CML)driver for clock transmissions.All the d-flip-flop dividers and phase-frequency detectors are protected from single-event upsets using the triple modular redundancy technique.The proposed VCO uses low-pass filters to suppress the noise from bias circuits.The tested LC-PLL covers a frequency locking range between 4.74 GHz and 5.92 GHz with two sub-bands.The jitter measurements of the frequency-halved clock(2.56 GHz)are less than 460 fs and 0.8 ps for the random and deterministic jitters,respectively,and a total of 7.5 ps peak-to-peak with a bit error rate of 10^(-12).The random and total jitter values for frequencies of 426 MHz and 20 MHz are less than 1.8 ps and 65 ps,respectively.The LC-PLL consumed 27 mW for the core and 73.8 mW in total.The measured results nearly coincided with the simulations and validated the analyses and tests.展开更多
In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-ene...In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-energy imaging calorimeter(HEIC) is currently being developed as a homogeneous calorimeter that utilizes long bismuth germanate(BGO) scintillation crystals as both absorbers and detectors. To accurately measure the energy deposition in the BGO bar of HEIC, a highdynamic-range readout method using a silicon photomultiplier(SiPM) and multiphotodiode(PD) with different active areas has been proposed. A prototype readout system that adopts multichannel charge measurement ASICs was also developed to read out the combined system of SiPMs and PDs. Preliminary tests confirmed the feasibility of the readout scheme, which is expected to have a dynamic range close to 10~6.展开更多
The Silicon Tracker (STK) is one of the detectors of the DAMPE satellite used to measure the incidence direction of high energy cosmic rays. It consists of 6 X-Y double layers of silicon micro-strip detectors with 7...The Silicon Tracker (STK) is one of the detectors of the DAMPE satellite used to measure the incidence direction of high energy cosmic rays. It consists of 6 X-Y double layers of silicon micro-strip detectors with 73728 readout channels. It is a great challenge to read out the channels and process the huge volume of data in the harsh environment of space. 1152 Application Specific Integrated Circuits (ASIC) and 384 ADCs are used to read out the detector channels. 192 Tracker Front-end Hybrid (TFH) modules and 8 identical Tracker Readout Board (TRB) modules are designed to control and digitalize the front signals. In this paper, the design of the readout electronics for the STK and its performance are presented in detail.展开更多
A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals wi...A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals with Gaussian distributions and current pulses up to 1000 counts/s, as well as an input current range of 1 n A–1 m A. When tested, the resolution was found to exceed 3.68% for full scale, the nonlinearity was found to be less than 0.11%, and the measurement sensibility was found to be less than 5 p A. We believe that the system will play a crucial role in improving the measurement accuracy of beam diagnosis and the efficiency of accelerator operation,as well as decreasing the time required for beam tuning.This system was applied to the beam diagnosis of an injector II prototype for an accelerator-driven subcritical system and produced excellent measurement results. A description of the adaptive fast readout system for wire scanners is presented in this paper.展开更多
This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL’s ...This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL’s 4×4 SPM array. A compact multiplexed readout based on a discretized positioning circuit (DPC) was developed to reduce the readout channels from 16 to 4 outputs. Different LYSO crystal arrays of 4×4, 8×8 and 12×12 with pixel sizes of 3.2, 1.6 and 1.0 mm respectively, have been tested with the compact readout board using a 137 Cs source. The initial results show that the compact imaging detector module with the compact multiplexed readout could clearly resolve 1 mm×1 mm×10 mm LYSO scintillation crystal array except those at the edges. The detector’s intrinsic spatial resolution up to 1 mm can be achieved with the 3 mm×3 mm size SPMArray4 through light sharing and compact multiplexed readout. Our results indicate that this detector module is feasible for the development of high-resolution compact PET.展开更多
近年来应用于中高能核物理实验的先进前端读出专用集成电路(application specific integrated circuit,ASIC)芯片呈现出越来越强的数字化趋势,可提高系统的集成度并降低功耗。论文研制了一种高计数率多通道时间测量与串行读出电路(high-...近年来应用于中高能核物理实验的先进前端读出专用集成电路(application specific integrated circuit,ASIC)芯片呈现出越来越强的数字化趋势,可提高系统的集成度并降低功耗。论文研制了一种高计数率多通道时间测量与串行读出电路(high-count rate multi-channel time measurement and serial readout circuit,HMTRC),可实现核事件去稀疏化、去随机化的读出。该电路主要包括了基于时钟分相技术的时间数字转化器、控制器、先进先出存储器和基于令牌环逻辑的轮询读出模块。HMTRC已被集成到一款自研的16通道前端读出ASIC芯片中,可测量和储存时间信息,并利用数字驱动的前端读出架构实现时间与能量信息同步读出。测试表明,时间分辨率好于2 ns,功能符合预期。展开更多
A BaF2(Barium Fluoride) detector array is designed to precisely measure the(n, γ) cross section at the CSNS-WNS(white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector ...A BaF2(Barium Fluoride) detector array is designed to precisely measure the(n, γ) cross section at the CSNS-WNS(white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11205154)
文摘The readout electronics for a prototype soft X-ray spectrometer based on silicon drift detector(SDD),for precisely measuring the energy and arrival time of X-ray photons is presented in this paper.The system mainly consists of two parts,i.e.,an analog electronics section(including a pre-amplifier,a signal shaper and filter,a constant fraction timing circuit,and a peak hold circuit)and a digital electronics section(including an ADC and a TDC).Test results with X-ray sources show that an energy dynamic range of 1-10 keV with an integral nonlinearity of less than 0.1%can be achieved,and the energy resolution is better than 160 eV @ 5.9 keV FWHM.Using a waveform generator,test results also indicate that time resolution of the electronics system is about 3.7 ns,which is much less than the transit time spread of SDD(<100 ns)and satisfies the requirements of future applications.
基金supported by the international partnership program of the Chinese Academy of Sciences under Grant No.211134KYSB20200057Double First-Class university project foundation of USTC+1 种基金Youth Innovation Promotion Association CASCAS Center for Excellence in Particle Physics(CCEPP)。
文摘The ring imaging Cherenkov(RICH) detector for particle identification(PID) is being evaluated for the future super tau-charm facility(STCF) complex. In this work, the prototype readout electronics for the RICH PID detector is designed. The prototype RICH PID detector is based on a thick gas electron multiplier combined with a micromegas detector for Cherenkov light detection. Considering that there will be a large number(~ 690,000) of detector channels in future RICH detector, the readout electronics faces many challenges to precisely measuring time and charge information, such as reducing the noise,increasing density, and improving precision. The requirements of the readout electronics are explored, the downselection of the ASICs is made and thus a prototype readout electronics is designed and implemented. Tests are also conducted to evaluate the performance of the prototype readout electronics, and the results indicate that the time resolution is better than ~ 1 ns(RMS) when the input charge is greater than ~ 12 fC based on the APV25chip, while the time resolution is better than ~ 1 ns(RMS) at an input charge of over ~ 48 fC based on the AGET and STCF ASIC chips, and the equivalent noise charge is better than ~ 0.5 fC(RMS) @ 20 pF based on the three ASICs. The test results indicate that the prototype readout electronics design meets the requirement of the future RICH PID detector and thus provides a reference for future engineering.
基金supported by the Natural Science Foundation of Shandong Province (No. ZR2022QA039)the Program of Qilu Young Scholars of Shandong University
文摘With the development of silicon photomultiplier(SiPM)technology,front-end electronics for SiPM signal processing have been highly sought after in various fields.A compact 64-channel front-end electronics(FEE)system achieved by fieldprogrammable gate array-based charge-to-digital converter(FPGA-QDC)technology was built and developed.The FEE consists of an analog board and FPGA board.The analog board incorporates commercial amplifiers,resistors,and capacitors.The FPGA board is composed of a low-cost FPGA.The electronics performance of the FEE was evaluated in terms of noise,linearity,and uniformity.A positron emission tomography(PET)detector with three different readout configurations was designed to validate the readout capability of the FEE for SiPM-based detectors.The PET detector was made of a 15×15 lutetium–yttrium oxyorthosilicate(LYSO)crystal array directly coupled with a SiPM array detector.The experimental results show that FEE can process dual-polarity charge signals from the SiPM detectors.In addition,it shows a good energy resolution for 511-keV gamma photons under the dual-end readout for the LYSO crystal array irradiated by a Na-22 source.Overall,the FEE based on FPGA-QDC shows promise for application in SiPM-based radiation detectors.
文摘In this paper, the design of a novel low-noise front-end readout circuit for Cadmium zinc telluride (CdZnTe) X-ray and γ-ray detectors is described. The front-end readout circuits include the charge sensitive amplifier (CSA) and the CR-RC shaper is implemented in TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 4.9 mm × 2.2 mm. The simulation results show that, the noise performance is 46 electrons + 10 electrons/pF, and power consumption is 1.65 mW per channel.
文摘The architecture of a multi-channel front-end system is important for realizing a high-resolution PET system. We propose a novel front-end readout electronic system with TDC to deal with time information for PET system which can easily design the timing control. Each channel consists of a charge preamplifier, slow/fast shaper, discriminator and an analog memory. There are an ADC and a TDC to process the energy information and time information for each channel at the same time. In this paper, the whole system signals flow is all simulated by MATLAB. The simulation results show that the proposed system can process slender current from the detector and achieve the energy and time information. The proposed architecture can be applied to high-resolution PET imaging systems with multi-channel ASICs.
基金support from Grant PID2020-116075GB-C21funded by MCIN/AEI/10.13039/501100011033+1 种基金by“ERDF A way of making Europe”under Grant PID2020-116075GB-C21They also acknowledge financial support from the State Agency for Research of the Spanish Ministry of Science and Innovation through the“Unit of Excellence Maria de Maeztu 2020-2023”award to the Institute of Cosmos Sciences(CEX2019-000918-M)。
文摘The BETA application-specific integrated circuit(ASIC)is a fully programmable chip designed to amplify,shape and digitize the signal of up to 64 Silicon photomultiplier(SiPM)channels,with a power consumption of approximately~1 mW/channel.Owing to its dual-path gain,the BETA chip is capable of resolving single photoelectrons(phes)with a signal-to-noise ratio(SNR)>5 while simultaneously achieving a dynamic range of~4000 phes.Thus,BETA can provide a cost-effective solution for the readout of SiPMs in space missions and other applications with a maximum rate below 10 kHz.In this study,we describe the key characteristics of the BETA ASIC and present an evaluation of the performance of its 16-channel version,which is implemented using 130 nm technology.The ASIC also contains two discriminators that can provide trigger signals with a time jitter down to 400 ps FWHM for 10 phes.The linearity error of the charge gain measurement was less than 2%for a dynamic range as large as 15 bits.
基金Supported by National Natural Science Foundation of China(10735060 and 11005135)Important Direction Project of CAS Knowledge Innovation Program(KJCX2-YW-N27)
文摘Front-end readout electronics have been developed for silicon strip detectors at our institute. In this system an Application Specific Integrated Circuit (ASIC) ATHED is used to realize multi-channel energy and time measurements. The slow control of ASIC chips is achieved by parallel port and the timing control signals of ASIC chips are implemented with the CPLD. The data acquisition is carried out with a PXI-DAQ card. The software has a user-friendly GUI developed with LabWindows/CVI in the Windows XP operating system. The test results show that the energy resolution is about 1.14% for alpha at 5.48 MeV and the maximum channel crosstalk of the system is 4.60%. The performance of the system is very reliable and is suitable for nuclear physics experiments.
基金supported in part by the National Natural Science Foundation of China(Nos.12005245,12075100,and 11775244)by the Scientific and Technological Innovation Project(No.2020000165)from the Institute of High Energy Physics,Chinese Academy of Sciences+1 种基金partially funded by the Scientific Instrument Development Project of the Chinese Academy of Sciences(No.ZDKYYQ20200007)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y201905).
文摘There is an urgent need for high-quality and high-frequency clock generators for high-energy physics experiments.The transmission data rate exceeds 10 Gbps for a single channel in future readout electronics of silicon pixel detectors.Others,such as time measurement detectors,require a high time resolution based on the time-to-digital readout architecture.A phase-locked loop(PLL)is an essential and broadly used circuit in these applications.This study presents an application-specific integrated circuit of a low-jitter,low-power LC-tank that is PLL fabricated using 55-nm CMOS technology.It includes a 3rd-order frequency synthesis loop with a programmable bandwidth,a divide-by-2 pre-scaler,standard low-voltage differential signaling interfaces,and a current mode logic(CML)driver for clock transmissions.All the d-flip-flop dividers and phase-frequency detectors are protected from single-event upsets using the triple modular redundancy technique.The proposed VCO uses low-pass filters to suppress the noise from bias circuits.The tested LC-PLL covers a frequency locking range between 4.74 GHz and 5.92 GHz with two sub-bands.The jitter measurements of the frequency-halved clock(2.56 GHz)are less than 460 fs and 0.8 ps for the random and deterministic jitters,respectively,and a total of 7.5 ps peak-to-peak with a bit error rate of 10^(-12).The random and total jitter values for frequencies of 426 MHz and 20 MHz are less than 1.8 ps and 65 ps,respectively.The LC-PLL consumed 27 mW for the core and 73.8 mW in total.The measured results nearly coincided with the simulations and validated the analyses and tests.
基金Foundation of China (Nos. 12227805, U1831206, 12103095, 12235012, 12273120, and 11973097)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. GJJSTD20210009)。
文摘In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-energy imaging calorimeter(HEIC) is currently being developed as a homogeneous calorimeter that utilizes long bismuth germanate(BGO) scintillation crystals as both absorbers and detectors. To accurately measure the energy deposition in the BGO bar of HEIC, a highdynamic-range readout method using a silicon photomultiplier(SiPM) and multiphotodiode(PD) with different active areas has been proposed. A prototype readout system that adopts multichannel charge measurement ASICs was also developed to read out the combined system of SiPMs and PDs. Preliminary tests confirmed the feasibility of the readout scheme, which is expected to have a dynamic range close to 10~6.
文摘The Silicon Tracker (STK) is one of the detectors of the DAMPE satellite used to measure the incidence direction of high energy cosmic rays. It consists of 6 X-Y double layers of silicon micro-strip detectors with 73728 readout channels. It is a great challenge to read out the channels and process the huge volume of data in the harsh environment of space. 1152 Application Specific Integrated Circuits (ASIC) and 384 ADCs are used to read out the detector channels. 192 Tracker Front-end Hybrid (TFH) modules and 8 identical Tracker Readout Board (TRB) modules are designed to control and digitalize the front signals. In this paper, the design of the readout electronics for the STK and its performance are presented in detail.
基金supported by the National Natural Science Foundation of China(Nos.11475233,11705257,and 11775285)
文摘A new wide-range fast readout system capable of adaptive identification is designed for wire scanners,which are used to measure beam profiles and emittance.This system is capable of handling varying current signals with Gaussian distributions and current pulses up to 1000 counts/s, as well as an input current range of 1 n A–1 m A. When tested, the resolution was found to exceed 3.68% for full scale, the nonlinearity was found to be less than 0.11%, and the measurement sensibility was found to be less than 5 p A. We believe that the system will play a crucial role in improving the measurement accuracy of beam diagnosis and the efficiency of accelerator operation,as well as decreasing the time required for beam tuning.This system was applied to the beam diagnosis of an injector II prototype for an accelerator-driven subcritical system and produced excellent measurement results. A description of the adaptive fast readout system for wire scanners is presented in this paper.
基金Supported by National Natural Science Foundation of China (10875162, 1105209)
文摘This work aims at developing compact readout electronics for a compact imaging detector module with silicon photomultiplier (SPM) array. The detector module consists of a LYSO crystal array coupling with a SensL’s 4×4 SPM array. A compact multiplexed readout based on a discretized positioning circuit (DPC) was developed to reduce the readout channels from 16 to 4 outputs. Different LYSO crystal arrays of 4×4, 8×8 and 12×12 with pixel sizes of 3.2, 1.6 and 1.0 mm respectively, have been tested with the compact readout board using a 137 Cs source. The initial results show that the compact imaging detector module with the compact multiplexed readout could clearly resolve 1 mm×1 mm×10 mm LYSO scintillation crystal array except those at the edges. The detector’s intrinsic spatial resolution up to 1 mm can be achieved with the 3 mm×3 mm size SPMArray4 through light sharing and compact multiplexed readout. Our results indicate that this detector module is feasible for the development of high-resolution compact PET.
文摘近年来应用于中高能核物理实验的先进前端读出专用集成电路(application specific integrated circuit,ASIC)芯片呈现出越来越强的数字化趋势,可提高系统的集成度并降低功耗。论文研制了一种高计数率多通道时间测量与串行读出电路(high-count rate multi-channel time measurement and serial readout circuit,HMTRC),可实现核事件去稀疏化、去随机化的读出。该电路主要包括了基于时钟分相技术的时间数字转化器、控制器、先进先出存储器和基于令牌环逻辑的轮询读出模块。HMTRC已被集成到一款自研的16通道前端读出ASIC芯片中,可测量和储存时间信息,并利用数字驱动的前端读出架构实现时间与能量信息同步读出。测试表明,时间分辨率好于2 ns,功能符合预期。
基金Supported by National Research and Development plan(2016 YFA0401602)NSAF(U1530111)National Natural Science Foundation of China(11005107)
文摘A BaF2(Barium Fluoride) detector array is designed to precisely measure the(n, γ) cross section at the CSNS-WNS(white neutron source at China Spallation Neutron Source). It is a 4π solid angle-shaped detector array consisting of 92 BaF2 crystal elements. To discriminate signals from the BaF2 detector, a pulse shape discrimination method is used, supported by a waveform digitization technique. There are 92 channels for digitizing. The precision and synchronization of clock distribution restricts the performance of waveform digitizing. In this paper, a clock prototype for the BaF2 readout electronics at CSNS-WNS is introduced. It is based on the PXIe platform and has a twin-stage tree topology. In the first stage, clock is synchronously distributed from the tree root to each PXIe crate through a coaxial cable over a long distance, while in the second stage, the clock is further distributed to each electronic module through a PXIe dedicated differential star bus. With the help of this topology, each tree node can fan out up to 20 clocks with 3U size. Test results show the clock jitter is less than 20 ps, which meets the requirements of the BaF2 readout electronics. Besides, this clock system has the advantages of high density, simplicity, scalability and cost saving, so it can be useful for other clock distribution applications.