The novel eye-based human-computer interaction(HCI) system aims to provide people, especially, disabled persons,a new way of communication with surroundings. It adopts a series of continual eye movements as input to p...The novel eye-based human-computer interaction(HCI) system aims to provide people, especially, disabled persons,a new way of communication with surroundings. It adopts a series of continual eye movements as input to perform simple control activities. Identification of eye movements is the crucial technology in these eye-based HCI systems. At present, researches on eye movement identification mainly focus on frontal face images. In fact, acquisition of non-frontal face images is more reasonable in real applications. In this paper, we discuss the identification process of eye movements from non-frontal face images. Firstly, the original head-shoulder images of 0?–±60?azimuths are sampled without any auxiliary light source. Secondly, the non-frontal face region is detected by using the Adaboost cascade classifiers. After that, we roughly extract eye windows by the integral projection function.Then, we propose a new method to calculate the x- y coordinates of the pupil center point by searching the minimal intensity value in the eye windows. According to the trajectory of the pupil center points, different eye movements(eye moving left, right, up or down)are successfully identified. A set of experiments is presented.展开更多
Biometric applications widely use the face as a component for recognition and automatic detection.Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and ro...Biometric applications widely use the face as a component for recognition and automatic detection.Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and rotation.This problem has been investigated,and a novice algorithm,namely RIFDS(Rotation Invariant Face Detection System),has been devised.The objective of the paper is to implement a robust method for face detection taken at various angle.Further to achieve better results than known algorithms for face detection.In RIFDS Polar Harmonic Transforms(PHT)technique is combined with Multi-Block Local Binary Pattern(MBLBP)in a hybrid manner.The MBLBP is used to extract texture patterns from the digital image,and the PHT is used to manage invariant rotation characteristics.In this manner,RIFDS can detect human faces at different rotations and with different facial expressions.The RIFDS performance is validated on different face databases like LFW,ORL,CMU,MIT-CBCL,JAFFF Face Databases,and Lena images.The results show that the RIFDS algorithm can detect faces at varying angles and at different image resolutions and with an accuracy of 99.9%.The RIFDS algorithm outperforms previous methods like Viola-Jones,Multi-blockLocal Binary Pattern(MBLBP),and Polar HarmonicTransforms(PHTs).The RIFDS approach has a further scope with a genetic algorithm to detect faces(approximation)even from shadows.展开更多
针对分辨率变化、视角变化和认证集单样本等实际条件下的人脸识别问题,提出了一种基于回归的人脸识别算法。该算法采用核主成分分析法(kernel principal component analysis)分别提取侧面低分辨率和正面高分辨率人脸特征,利用Procruste...针对分辨率变化、视角变化和认证集单样本等实际条件下的人脸识别问题,提出了一种基于回归的人脸识别算法。该算法采用核主成分分析法(kernel principal component analysis)分别提取侧面低分辨率和正面高分辨率人脸特征,利用Procrustes分析建立每一种侧面视角低分辨率KPCA特征和正面高分辨率KPCA特征间的映射关系,从而获得对应的回归模型。根据这些回归模型,即可得到测试侧面低分辨率人脸对应的正面高分辨率KPCA特征,并通过最近邻分类器进行识别。在标准图库上的实验表明,与基于线性模型的人脸识别对比算法相比,本文所提算法识别率提高了4%至36%,而在线测试时间仅比最快的对比算法多1.087ms。展开更多
基金supported by Innovation Program of Shanghai Municipal Education Commission of China(No.14YZ169)
文摘The novel eye-based human-computer interaction(HCI) system aims to provide people, especially, disabled persons,a new way of communication with surroundings. It adopts a series of continual eye movements as input to perform simple control activities. Identification of eye movements is the crucial technology in these eye-based HCI systems. At present, researches on eye movement identification mainly focus on frontal face images. In fact, acquisition of non-frontal face images is more reasonable in real applications. In this paper, we discuss the identification process of eye movements from non-frontal face images. Firstly, the original head-shoulder images of 0?–±60?azimuths are sampled without any auxiliary light source. Secondly, the non-frontal face region is detected by using the Adaboost cascade classifiers. After that, we roughly extract eye windows by the integral projection function.Then, we propose a new method to calculate the x- y coordinates of the pupil center point by searching the minimal intensity value in the eye windows. According to the trajectory of the pupil center points, different eye movements(eye moving left, right, up or down)are successfully identified. A set of experiments is presented.
基金The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No-R-2021-154.
文摘Biometric applications widely use the face as a component for recognition and automatic detection.Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and rotation.This problem has been investigated,and a novice algorithm,namely RIFDS(Rotation Invariant Face Detection System),has been devised.The objective of the paper is to implement a robust method for face detection taken at various angle.Further to achieve better results than known algorithms for face detection.In RIFDS Polar Harmonic Transforms(PHT)technique is combined with Multi-Block Local Binary Pattern(MBLBP)in a hybrid manner.The MBLBP is used to extract texture patterns from the digital image,and the PHT is used to manage invariant rotation characteristics.In this manner,RIFDS can detect human faces at different rotations and with different facial expressions.The RIFDS performance is validated on different face databases like LFW,ORL,CMU,MIT-CBCL,JAFFF Face Databases,and Lena images.The results show that the RIFDS algorithm can detect faces at varying angles and at different image resolutions and with an accuracy of 99.9%.The RIFDS algorithm outperforms previous methods like Viola-Jones,Multi-blockLocal Binary Pattern(MBLBP),and Polar HarmonicTransforms(PHTs).The RIFDS approach has a further scope with a genetic algorithm to detect faces(approximation)even from shadows.
文摘针对分辨率变化、视角变化和认证集单样本等实际条件下的人脸识别问题,提出了一种基于回归的人脸识别算法。该算法采用核主成分分析法(kernel principal component analysis)分别提取侧面低分辨率和正面高分辨率人脸特征,利用Procrustes分析建立每一种侧面视角低分辨率KPCA特征和正面高分辨率KPCA特征间的映射关系,从而获得对应的回归模型。根据这些回归模型,即可得到测试侧面低分辨率人脸对应的正面高分辨率KPCA特征,并通过最近邻分类器进行识别。在标准图库上的实验表明,与基于线性模型的人脸识别对比算法相比,本文所提算法识别率提高了4%至36%,而在线测试时间仅比最快的对比算法多1.087ms。