A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,...A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.展开更多
Serving as recycled coarse aggregate,the pretreated rural building waste was added into the concrete hollow bricks in the varying replacement of 0,20%,40%,60%,80% and 100%.By testing its compressive strength,flexural ...Serving as recycled coarse aggregate,the pretreated rural building waste was added into the concrete hollow bricks in the varying replacement of 0,20%,40%,60%,80% and 100%.By testing its compressive strength,flexural strength,mass and strength loss after freeze-thaw cycles,the impact of the different replacement on mechanical and frost-resistance properties of concrete hollow bricks was presented through SEM analysis.The experimental results show that,with the increase in recycled coarse aggregate replacement rate,the mechanical and frost-resistance properties show a downward trend;when the replacement rate is 40%,28 d compressive strength and flexural strength of concrete hollow brick demonstrate the good peak value which meet the requirement of the national standard for ordinary small concrete hollow bricks;the interfacial structures of the pretreated recycled concrete is more complicated than those of concrete made of natural aggregate,but the former enjoys better interface bonding and tight structure.展开更多
Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategie...Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries.展开更多
The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resona...The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resonance method was used to detect the Ed,resulting in a limitation for field tests.The impact-echo method can make up defects of traditional detection methods for frost-resistance testing,such as the evaluation via the loss of mass or strength.The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site.Results show that the impact-echo method can replace the traditional resonance frequency method to evaluate the frost resistance of concrete,and has advantages of high accuracy,easy to operate,and not affecting by the aggregate size and size effect of samples.The dynamic elastic modulus of concrete detected by the impact-echo method has little difference with that obtained by the traditional resonance method.The one-dimensional elastic wave velocity of concrete has a good linear correlation with the transverse resonance frequency.The freeze-thaw damage occurred from the surface to the inner layer,and the surface is expected to be the most vulnerable part for the freeze-thaw damage.It is expected to monitor and track the degradation of the frost resistance of an actual structure by frequently detecting the P-wave velocity on site,which avoids coring again.展开更多
Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promisin...Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.展开更多
Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupyin...Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupying a large period of the year, thus requiring not only sustainable construction materials, but also which provide thermal comfort in the building by limiting the energy demand for air conditioning. These qualifications are important for sub-Saharan African countries in general and those of the Sudano-Sahelian zone in particular, which need ecological materials with good thermal performance to limit heating inside buildings. This study is an energy recovery of agricultural waste in buildings with a view to offering the populations of the northern regions of Cameroon suitable materials at lower cost for the construction of buildings. The soil used for this study was extracted from the locality of Yagoua where the populations make abundant use of mud bricks. Fonio waste was incorporated at low levels into the earth bricks, particularly at 0%, 1%, 2%, 3%, and 4%, with a view to strengthening their thermophysical and mechanical properties. The results obtained indicate that earth bricks reinforced with 4% waste showed better thermal and mechanical insulation properties compared to other formulations with an improvement of 16% and 78% respectively compared to the unreinforced samples. This research allows us to conclude that fonio waste can be used practically without expense in the building with a view to its energy recovery and will promote not only thermal comfort and the limitation of the energy supply for air conditioning, but the construction of more sustainable buildings with a cleaner environment.展开更多
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
The swelling behavior of red-bed rocks is a significant factor in the abnormal uplift of subgrades for high-speed railways constructed on the red stratum in the Sichuan Basin,China.The prime objective of this paper is...The swelling behavior of red-bed rocks is a significant factor in the abnormal uplift of subgrades for high-speed railways constructed on the red stratum in the Sichuan Basin,China.The prime objective of this paper is to investigate the impact of mineralogical composition,moisture content,and overburden load on the time-dependent unconfined and oedometric swelling behavior of red-bed siltstone in the context of differences in the slake durability.Twenty samples were prepared for the swelling test,with eleven used for the unconfined swelling and slake index tests and nine for the oedometric swelling test.The temporal dependency of swelling is characterized by the viscosity coefficient of water absorption in a proposed swelling model.Results indicate that the swelling deformation of red-bed rocks is due to a combination of hydration swelling within the rock matrix and crack expansion caused by air breakage.In the unconfined swelling test,the final axial swelling strain of red-bed rocks decreases linearly with increasing slake index,while the viscosity coefficient increases exponentially with the slake index.In the oedometric swelling test,red-bed rocks with lower slake durability show greater sensitivity to lateral constraint and overburden load compared to those with higher slake durability.展开更多
Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodolog...Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodology/approach–With the continuous promotion of infrastructure construction,the focus of China’s railway construction has gradually shifted to the western region.The four typical environments of large temperature differences,strong winds and dryness,high cold and low air pressure unique to the western mountainous areas of China have adverse effects on the durability of typical railway structure concrete(bridges,ballastless tracks and tunnels).This study identified the characteristics of four typical environments in the western mountainous areas of China through on-site research.The impact mechanism of the four typical environments on the durability of concrete in different structural parts of railways has been explored through theoretical analysis and experimental research;Finally,a strategy for improving the durability of railway concrete suitable for the western mountainous areas of China was proposed.Findings–The daily temperature difference in the western mountainous areas of China is more than twice that of the plain region,which will lead to significant temperature deformation and stress in the multi-layered structure of railway ballastless tracks.It will result in cracking.The wind speed in the western plateau region is about 2.5 to 3 times that of the plain region,and the average annual rainfall is only 1/5 of that in the plain region.The drying effect on the surface of casting concrete will significantly accelerate its cracking process,leading to serious durability problems.The environmental temperature in the western mountainous areas of China is generally low,and there are more freeze-thaw cycles,which will increase the risk of freeze-thaw damage to railway concrete.The environmental air pressure in the western plateau region is only 60%of that in the plain region.The moisture inside the concrete is more likely to diffuse into the surrounding environment under the pressure difference,resulting in greater water loss and shrinkage deformation of the concrete in the plateau region.The above four issues will collectively lead to the rapid deterioration of concrete durability in the western plateau region.The corresponding durability improvement suggestions from theoretical research,new technology development and standard system was proposed in this paper.Originality/value–The research can provide the mechanism of durability degradation of railway concrete in the western mountainous areas of China and corresponding improvement strategies.展开更多
Purpose – This study aims to analyze the factors, evaluation techniques of the durability of existing railwayengineering.Design/methodology/approach – China has built a railway network of over 150,000 km. Ensuring t...Purpose – This study aims to analyze the factors, evaluation techniques of the durability of existing railwayengineering.Design/methodology/approach – China has built a railway network of over 150,000 km. Ensuring thesafety of the existing railway engineering is of great significance for maintaining normal railway operationorder. However, railway engineering is a strip structure that crosses multiple complex environments. Andrailway engineering will withstand high-frequency impact loads from trains. The above factors have led todifferences in the deterioration characteristics and maintenance strategies of railway engineering compared toconventional concrete structures. Therefore, it is very important to analyze the key factors that affect thedurability of railway structures and propose technologies for durability evaluation.Findings – The factors that affect the durability and reliability of railway engineering are mainly divided intothree categories: material factors, environmental factors and load factors. Among them, material factors alsoinclude influencing factors, such as raw materials, mix proportions and so on. Environmental factors varydepending on the service environment of railway engineering, and the durability and deterioration of concretehave different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapiddetection methods for five common diseases in railway engineering are also proposed in this paper. Thesemethods can quickly evaluate the durability of existing railway engineering concrete.Originality/value – The research can provide some new evaluation techniques and methods for thedurability of existing railway engineering.展开更多
Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the...Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.展开更多
Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics...Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.展开更多
This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>...This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.展开更多
Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a c...Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a certain gradation or proportion.This type of concrete is highly suitable for modern construction waste disposal and reuse and has been widely used in various construction projects.It can also be used as an environmentally friendly permeable brick material to promote the development of modern green buildings.However,practical applications have found that compared to ordinary concrete,the durability of this type of concrete is more susceptible to high-temperature and complex environments.Based on this,this paper conducts theoretical research on its durability in high-temperature and complex environments,including the current research status,existing problems,and application prospects of recycled aggregate concrete’s durability in such environments.It is hoped that this analysis can provide some reference for studying the influence of high-temperature and complex environments on recycled aggregate concrete and its subsequent application strategies.展开更多
Nowadays,the application of Fungi as a bio-mediated soil improvement technique is developing.The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown,and the treated sample tends to have low durabi...Nowadays,the application of Fungi as a bio-mediated soil improvement technique is developing.The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown,and the treated sample tends to have low durability.This article presents experimental results on the hydraulic conductivity and shear strength of Fungi-mycelium-treated silica sand.The fungi used in the experiments are a combination ofRhizopus oligosporus andRhizopus oryzae,which are popular for making Tempeh,a local soybean cuisine from Indonesia.The samples were prepared by mixing the sand with Tempeh inoculum at various treatments and Tempe inoculum and rice flour dosages for enhancing the durability of the treated soil.The results showed that the saturated permeability of the treated soil could be reduced by about 10 times compared to the untreated soil.In addition,the Soil-Water Characteristic Curve of the treated soil also developed.The effect of the fungi appears to fill the void of soil and hence increases the Air Entry Value and residual suction of soil.The curing method outside the mold(O-method)with 10%Tempeh inoculum,and 5%Tempeh inoculum with 5%rice flour is proven can extend the durability of the treated sample,the undrained compressive strength is about 40 kPa on day 14.Scanning electron microscope was performed on the samples,which lasted for 4 months.The mycelium and hyphae are still clearly seen covering all sand particles with different percentages of Tempeh inoculum and rice flour.When the mycelium covered all the sand particles and filled the pores,the water flow was partially blocked.It might be attributed to the strong hydrophobicity of the fungi,which could prevent water from penetrating the soil.展开更多
A method for a vehicle durability emission test using a robot driver insteadof human drivers on the chassis dynamometer is presented. The system architecture of vehicledurability emission test cell, the road load simu...A method for a vehicle durability emission test using a robot driver insteadof human drivers on the chassis dynamometer is presented. The system architecture of vehicledurability emission test cell, the road load simulation strategy and the tele-monitoring systembased on Browser/Client structure are described. Furthermore, the construction of the robot driver,vehicle performance self-learning algorithm, multi-mode vehicle control model and vehicle speedtracking strategy based on fuzzy logic arealso discussed. Besides, the capability of controlparameters self-compensation on-line makes it possible to compensate the wear of vehicle componentsand the variety of clutch true bite point during the long term test. Experimental results show thattherobot driver can be applicable to a wide variety of vehicles and the obtained results stay withina tolerance band of ± 2 km/h. Moreover the robot driver is able to control tested vehicles withgood repeatability and consistency; therefore, this methodpresents a solution to eliminate theuncertainty of emission test results by human drivers and to ensure the accuracy and reliability ofemission test results.展开更多
This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to d...This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.展开更多
Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions an...Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation.展开更多
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ...The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.展开更多
A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.F...A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.First,finite element analysis with a smeared cracking approach is implemented.The time-dependent bond-slip relationship between steel and concrete,and the stress-strain relationship of corroded steel bars are considered.Secondly,a stochastic finite element-based computational framework for reliability assessment of deteriorating RC bridges is proposed.The spatial and temporal variability of several parameters affecting the reliability of RC bridges is considered.Based on the data reported by several researchers and from field investigations,the Monte Carlo simulation is used to account for the uncertainties in various parameters,including local and general corrosion in rebars,concrete cover depth,surface chloride concentration,chloride diffusion coefficient,and corrosion rate.Finally,the proposed probabilistic durability assessment approach and framework are applied to evaluate the time-dependent reliability of a girder of a RC bridge located on the Tianjin Binhai New Area in China.展开更多
基金Funded by the National Natural Science Foundation of China(No.51878081).
文摘A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment.
基金Funded by the National Key Technology R&D Program of China for the 11th Five-Year Plan(2006BAJ04A04)the 100 Million Human Resources Foundation of Liaoning Province (2008921034)the Human Resource Development in Shenyang Special Foundation (2008140403011)
文摘Serving as recycled coarse aggregate,the pretreated rural building waste was added into the concrete hollow bricks in the varying replacement of 0,20%,40%,60%,80% and 100%.By testing its compressive strength,flexural strength,mass and strength loss after freeze-thaw cycles,the impact of the different replacement on mechanical and frost-resistance properties of concrete hollow bricks was presented through SEM analysis.The experimental results show that,with the increase in recycled coarse aggregate replacement rate,the mechanical and frost-resistance properties show a downward trend;when the replacement rate is 40%,28 d compressive strength and flexural strength of concrete hollow brick demonstrate the good peak value which meet the requirement of the national standard for ordinary small concrete hollow bricks;the interfacial structures of the pretreated recycled concrete is more complicated than those of concrete made of natural aggregate,but the former enjoys better interface bonding and tight structure.
基金supported by the National Natural Science Foundation of China(52222407).
文摘Rechargeable magnesium-metal batteries(RMMBs)are promising next-generation secondary batteries;however,their development is inhibited by the low capacity and short cycle lifespan of cathodes.Although various strategies have been devised to enhance the Mg^(2+)migration kinetics and structural stability of cathodes,they fail to improve electronic conductivity,rendering the cathodes incompatible with magnesium-metal anodes.Herein,we propose a dual-defect engineering strategy,namely,the incorporation of Mg^(2+)pre-intercalation defect(P-Mgd)and oxygen defect(Od),to simultaneously improve the Mg^(2+)migration kinetics,structural stability,and electronic conductivity of the cathodes of RMMBs.Using lamellar V_(2)O_(5)·nH_(2)O as a demo cathode material,we prepare a cathode comprising Mg_(0.07)V_(2)O_(5)·1.4H_(2)O nanobelts composited with reduced graphene oxide(MVOH/rGO)with P-Mgd and Od.The Od enlarges interlayer spacing,accelerates Mg^(2+)migration kinetics,and prevents structural collapse,while the P-Mgd stabilizes the lamellar structure and increases electronic conductivity.Consequently,the MVOH/rGO cathode exhibits a high capacity of 197 mAh g^(−1),and the developed Mg foil//MVOH/rGO full cell demonstrates an incredible lifespan of 850 cycles at 0.1 A g^(−1),capable of powering a light-emitting diode.The proposed dual-defect engineering strategy provides new insights into developing high-durability,high-capacity cathodes,advancing the practical application of RMMBs,and other new secondary batteries.
基金Hainan Provincial Natural Science Foundation of China(522QN279)Research Lab Construction of Hainan University(ZY2019HN0904).
文摘The dynamic elasticity modulus(Ed)is the most commonly used indexes for nondestructive testing to represent the internal damage of hydraulic concrete.Samples with a specific size is required when the transverse resonance method was used to detect the Ed,resulting in a limitation for field tests.The impact-echo method can make up defects of traditional detection methods for frost-resistance testing,such as the evaluation via the loss of mass or strength.The feasibility of the impact-echo method to obtain the relative Ed is explored to detect the frost-resistance property of large-volume hydraulic concretes on site.Results show that the impact-echo method can replace the traditional resonance frequency method to evaluate the frost resistance of concrete,and has advantages of high accuracy,easy to operate,and not affecting by the aggregate size and size effect of samples.The dynamic elastic modulus of concrete detected by the impact-echo method has little difference with that obtained by the traditional resonance method.The one-dimensional elastic wave velocity of concrete has a good linear correlation with the transverse resonance frequency.The freeze-thaw damage occurred from the surface to the inner layer,and the surface is expected to be the most vulnerable part for the freeze-thaw damage.It is expected to monitor and track the degradation of the frost resistance of an actual structure by frequently detecting the P-wave velocity on site,which avoids coring again.
基金Key Research and Development Program of Zhejiang,Grant/Award Number:2021C03022National Natural Science Foundation of China,Grant/Award Numbers:22002104,22272115,22202145,22202146,22102112,22202147。
文摘Catalyst design relies heavily on electronic metal‐support interactions,but the metal‐support interface with an uncontrollable electronic or coordination environment makes it challenging.Herein,we outline a promising approach for the rational design of catalysts involving heteroatoms as anchors for Pd nanoparticles for ethanol oxidation reaction(EOR)catalysis.The doped B and N atoms from dimethylamine borane(DB)occupy the position of the Ti_(3)C_(2) lattice to anchor the supported Pd nanoparticles.The electrons transfer from the support to B atoms,and then to the metal Pd to form a stable electronic center.A strong electronic interaction can be produced and the d‐band center can be shifted down,driving Pd into the dominant metallic state and making Pd nanoparticles deposit uniformly on the support.As‐obtained Pd/DB–Ti_(3)C_(2) exhibits superior durability to its counterpart(∼14.6% retention)with 91.1% retention after 2000 cycles,placing it among the top single metal anodic catalysts.Further,in situ Raman and density functional theory computations confirm that Pd/DB–Ti_(3)C_(2) is capable of dehydrogenating ethanol at low reaction energies.
文摘Buildings constructed using modern materials such as cement are energy-intensive, facilitate heat transfer and thus promote warming inside the building. However, the Sudano-Sahelian regions have a hot climate occupying a large period of the year, thus requiring not only sustainable construction materials, but also which provide thermal comfort in the building by limiting the energy demand for air conditioning. These qualifications are important for sub-Saharan African countries in general and those of the Sudano-Sahelian zone in particular, which need ecological materials with good thermal performance to limit heating inside buildings. This study is an energy recovery of agricultural waste in buildings with a view to offering the populations of the northern regions of Cameroon suitable materials at lower cost for the construction of buildings. The soil used for this study was extracted from the locality of Yagoua where the populations make abundant use of mud bricks. Fonio waste was incorporated at low levels into the earth bricks, particularly at 0%, 1%, 2%, 3%, and 4%, with a view to strengthening their thermophysical and mechanical properties. The results obtained indicate that earth bricks reinforced with 4% waste showed better thermal and mechanical insulation properties compared to other formulations with an improvement of 16% and 78% respectively compared to the unreinforced samples. This research allows us to conclude that fonio waste can be used practically without expense in the building with a view to its energy recovery and will promote not only thermal comfort and the limitation of the energy supply for air conditioning, but the construction of more sustainable buildings with a cleaner environment.
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金financial support received from the National Natural Science Foundation of China(No.51578230).
文摘The swelling behavior of red-bed rocks is a significant factor in the abnormal uplift of subgrades for high-speed railways constructed on the red stratum in the Sichuan Basin,China.The prime objective of this paper is to investigate the impact of mineralogical composition,moisture content,and overburden load on the time-dependent unconfined and oedometric swelling behavior of red-bed siltstone in the context of differences in the slake durability.Twenty samples were prepared for the swelling test,with eleven used for the unconfined swelling and slake index tests and nine for the oedometric swelling test.The temporal dependency of swelling is characterized by the viscosity coefficient of water absorption in a proposed swelling model.Results indicate that the swelling deformation of red-bed rocks is due to a combination of hydration swelling within the rock matrix and crack expansion caused by air breakage.In the unconfined swelling test,the final axial swelling strain of red-bed rocks decreases linearly with increasing slake index,while the viscosity coefficient increases exponentially with the slake index.In the oedometric swelling test,red-bed rocks with lower slake durability show greater sensitivity to lateral constraint and overburden load compared to those with higher slake durability.
基金the National Science Foundation of China(52478289)National Key Research and Development Program of China(2020YFC1909900)Scientific Research Project of China Academy of Railway Sciences Group Co.,Ltd(2023YJ184).
文摘Purpose–This study aims to analyze the impact mechanism of typical environments in China’s western mountainous areas on the durability of railway concrete and propose measures to improve durability.Design/methodology/approach–With the continuous promotion of infrastructure construction,the focus of China’s railway construction has gradually shifted to the western region.The four typical environments of large temperature differences,strong winds and dryness,high cold and low air pressure unique to the western mountainous areas of China have adverse effects on the durability of typical railway structure concrete(bridges,ballastless tracks and tunnels).This study identified the characteristics of four typical environments in the western mountainous areas of China through on-site research.The impact mechanism of the four typical environments on the durability of concrete in different structural parts of railways has been explored through theoretical analysis and experimental research;Finally,a strategy for improving the durability of railway concrete suitable for the western mountainous areas of China was proposed.Findings–The daily temperature difference in the western mountainous areas of China is more than twice that of the plain region,which will lead to significant temperature deformation and stress in the multi-layered structure of railway ballastless tracks.It will result in cracking.The wind speed in the western plateau region is about 2.5 to 3 times that of the plain region,and the average annual rainfall is only 1/5 of that in the plain region.The drying effect on the surface of casting concrete will significantly accelerate its cracking process,leading to serious durability problems.The environmental temperature in the western mountainous areas of China is generally low,and there are more freeze-thaw cycles,which will increase the risk of freeze-thaw damage to railway concrete.The environmental air pressure in the western plateau region is only 60%of that in the plain region.The moisture inside the concrete is more likely to diffuse into the surrounding environment under the pressure difference,resulting in greater water loss and shrinkage deformation of the concrete in the plateau region.The above four issues will collectively lead to the rapid deterioration of concrete durability in the western plateau region.The corresponding durability improvement suggestions from theoretical research,new technology development and standard system was proposed in this paper.Originality/value–The research can provide the mechanism of durability degradation of railway concrete in the western mountainous areas of China and corresponding improvement strategies.
基金funded by the National Key Research and Development Program of China(No:2020YFC1909900)the National Natural Science Foundation of China(No:51908550)the Scientific Research Project of China Academy of Railway Sciences Group Corporation Limited(No:2021YJ173).
文摘Purpose – This study aims to analyze the factors, evaluation techniques of the durability of existing railwayengineering.Design/methodology/approach – China has built a railway network of over 150,000 km. Ensuring thesafety of the existing railway engineering is of great significance for maintaining normal railway operationorder. However, railway engineering is a strip structure that crosses multiple complex environments. Andrailway engineering will withstand high-frequency impact loads from trains. The above factors have led todifferences in the deterioration characteristics and maintenance strategies of railway engineering compared toconventional concrete structures. Therefore, it is very important to analyze the key factors that affect thedurability of railway structures and propose technologies for durability evaluation.Findings – The factors that affect the durability and reliability of railway engineering are mainly divided intothree categories: material factors, environmental factors and load factors. Among them, material factors alsoinclude influencing factors, such as raw materials, mix proportions and so on. Environmental factors varydepending on the service environment of railway engineering, and the durability and deterioration of concretehave different failure mechanisms. Load factors include static load and train dynamic load. The on-site rapiddetection methods for five common diseases in railway engineering are also proposed in this paper. Thesemethods can quickly evaluate the durability of existing railway engineering concrete.Originality/value – The research can provide some new evaluation techniques and methods for thedurability of existing railway engineering.
基金funded from the European Union's Horizon 2020 research and innovation programme in the project In2Track3 under grant agreement No.101012456.
文摘Dynamic wheel-rail contact forces induced by a severe form of wheel tread damage have been measured by a wheel impact load detector during full-scale field tests at different vehicle speeds.Based on laser scanning,the measured three-dimensional damage geometry is employed in simulations of dynamic vehicle-track interaction to calibrate and verify a simulation model.The relation between the magnitude of the impact load and various operational parameters,such as vehicle speed,lateral position of wheel-rail contact,track stiffness and position of impact within a sleeper bay,is investigated.The calibrated model is later employed in simulations featuring other forms of tread damage;their effects on impact load and subsequent fatigue impact on bearings,wheel webs and subsurface initiated rolling contact fatigue of the wheel tread are assessed.The results quantify the effects of wheel tread defects and are valuable in a shift towards condition-based maintenance of running gear,and for general assessment of the severity of different types of railway wheel tread damage.
文摘Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.
文摘This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.
基金Chongqing Municipal Education Commission Science and Technology Research Project(Project No.KJQN202301910).
文摘Recycled aggregate concrete refers to a new type of concrete material made by processing waste concrete materials through grading,crushing,and cleaning,and then mixing them with cement,water,and other materials in a certain gradation or proportion.This type of concrete is highly suitable for modern construction waste disposal and reuse and has been widely used in various construction projects.It can also be used as an environmentally friendly permeable brick material to promote the development of modern green buildings.However,practical applications have found that compared to ordinary concrete,the durability of this type of concrete is more susceptible to high-temperature and complex environments.Based on this,this paper conducts theoretical research on its durability in high-temperature and complex environments,including the current research status,existing problems,and application prospects of recycled aggregate concrete’s durability in such environments.It is hoped that this analysis can provide some reference for studying the influence of high-temperature and complex environments on recycled aggregate concrete and its subsequent application strategies.
文摘Nowadays,the application of Fungi as a bio-mediated soil improvement technique is developing.The hydraulic properties of Rhizopus Fungi-Mycelium Treated Soil are unknown,and the treated sample tends to have low durability.This article presents experimental results on the hydraulic conductivity and shear strength of Fungi-mycelium-treated silica sand.The fungi used in the experiments are a combination ofRhizopus oligosporus andRhizopus oryzae,which are popular for making Tempeh,a local soybean cuisine from Indonesia.The samples were prepared by mixing the sand with Tempeh inoculum at various treatments and Tempe inoculum and rice flour dosages for enhancing the durability of the treated soil.The results showed that the saturated permeability of the treated soil could be reduced by about 10 times compared to the untreated soil.In addition,the Soil-Water Characteristic Curve of the treated soil also developed.The effect of the fungi appears to fill the void of soil and hence increases the Air Entry Value and residual suction of soil.The curing method outside the mold(O-method)with 10%Tempeh inoculum,and 5%Tempeh inoculum with 5%rice flour is proven can extend the durability of the treated sample,the undrained compressive strength is about 40 kPa on day 14.Scanning electron microscope was performed on the samples,which lasted for 4 months.The mycelium and hyphae are still clearly seen covering all sand particles with different percentages of Tempeh inoculum and rice flour.When the mycelium covered all the sand particles and filled the pores,the water flow was partially blocked.It might be attributed to the strong hydrophobicity of the fungi,which could prevent water from penetrating the soil.
文摘A method for a vehicle durability emission test using a robot driver insteadof human drivers on the chassis dynamometer is presented. The system architecture of vehicledurability emission test cell, the road load simulation strategy and the tele-monitoring systembased on Browser/Client structure are described. Furthermore, the construction of the robot driver,vehicle performance self-learning algorithm, multi-mode vehicle control model and vehicle speedtracking strategy based on fuzzy logic arealso discussed. Besides, the capability of controlparameters self-compensation on-line makes it possible to compensate the wear of vehicle componentsand the variety of clutch true bite point during the long term test. Experimental results show thattherobot driver can be applicable to a wide variety of vehicles and the obtained results stay withina tolerance band of ± 2 km/h. Moreover the robot driver is able to control tested vehicles withgood repeatability and consistency; therefore, this methodpresents a solution to eliminate theuncertainty of emission test results by human drivers and to ensure the accuracy and reliability ofemission test results.
基金The National Key Basic Research Program of China(973 Program)(No.2012CB026200)the Key Project of Chinese Ministry of Education(No.113029A)+1 种基金the National Key Technology R&D Program of China during the 12th Five Year Plan Period(No.2011BAB03B09)the Fundamental Research Funds for the Central Universities
文摘This paper presents an experimental study on the alkali-resistant properties of basalt fiber reinforced polymers (BFRP) bars under a typical concrete environment. BFRP bars were embedded in concrete and exposed to different aggressive environments, including tap water, saline solution and ambient temperature environments, to study the effects of the type of solution and relative humidity (RH) on the durability of BFRP. Meanwhile, BFRP bars were directly immersed in an alkaline solution for comparison. The acceleration factor describing the relationship between the alkaline solution immersion and the moisture-saturated concrete was also obtained. Aging was accelerated with a temperature of 60 ℃. The results show that the chloridion in the saline solution does not have any harmful effects on the degradation of the concrete-encased BFRP bars. Contact with an alkaline (high pH) concrete pore-water solution is the primary reason for the degradation of the BFRP bars. The degradation rate of concrete-encased BFRP bars is accelerated when a high temperature and a high humidity are present simultaneously. The degradation rate of the BFRP bars is relatively quick at the initial stage and slows down with exposure time. Results show that the degradation of 2.18 years in moisture-saturated concrete at 60 ℃corresponds to that of one year when directly immersed in an alkaline solution (other conditions remaining the same) for the BFRP bars analyzed.
基金The Key Project of National Natural Science Foun-dation of China (No50538070)
文摘Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation.
基金The National Natural Science Foundation of China(No.50608013)Special Prophase Project on Basic Research of the National Department of Science and Technology(No.2004CCA04100)
文摘The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.
基金The National Natural Science Foundation of China (No.50708065)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z113)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070056125)
文摘A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.First,finite element analysis with a smeared cracking approach is implemented.The time-dependent bond-slip relationship between steel and concrete,and the stress-strain relationship of corroded steel bars are considered.Secondly,a stochastic finite element-based computational framework for reliability assessment of deteriorating RC bridges is proposed.The spatial and temporal variability of several parameters affecting the reliability of RC bridges is considered.Based on the data reported by several researchers and from field investigations,the Monte Carlo simulation is used to account for the uncertainties in various parameters,including local and general corrosion in rebars,concrete cover depth,surface chloride concentration,chloride diffusion coefficient,and corrosion rate.Finally,the proposed probabilistic durability assessment approach and framework are applied to evaluate the time-dependent reliability of a girder of a RC bridge located on the Tianjin Binhai New Area in China.