To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character...To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.展开更多
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami...The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.展开更多
Affected by climate warming and anthropogenic disturbances, the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC) is continuously decreased, which may de...Affected by climate warming and anthropogenic disturbances, the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC) is continuously decreased, which may delay the construction of major projects in the future. In this study, based on chemical stabilization of warm and icerich frozen ground, the soil-cement column(SCC) for ground improvement was recommended to reinforce the foundations in warm and ice-rich permafrost regions. To explore the validity of countermeasures mentioned above, both the original foundation and the composite foundation consisting of SCC with soil temperature of -1.0℃ were prepared in the laboratory, and then the plate loading tests were carried out. The laboratory investigations indicated that the bearing capacity of composite foundation consisting of SCC was higher than that of original foundation, and the total deformation of original foundation was greater than that of composite foundation, meaning that overall stability of foundation with warm and ice-rich frozen soil can be improved by SCC installation. Meanwhile, a numerical model considering the interface interaction between frozen soil and SCC was established for interpretating the bearing mechanism of composite foundation. The numerical investigations revealed that the SCC within composite foundation was responsible for the more applied load, and the applied load can be delivered to deeper zone in depth due to the SCC installation, which was favorable for improving the bearing characteristic of composite foundation. The investigations provide the valuable guideline for the choice of engineering supporting techniques to major projects within the QTEC.展开更多
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an...The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.展开更多
Frozen shoulder(FS)manifests as progressively worsening pain and a reduction in shoulder range of motion(ROM).Salvianolic acid B(SaB)is recently expected to be used in the treatment of fibrosis diseases including FS.W...Frozen shoulder(FS)manifests as progressively worsening pain and a reduction in shoulder range of motion(ROM).Salvianolic acid B(SaB)is recently expected to be used in the treatment of fibrosis diseases including FS.We firstly demonstrate that SaB can effectively hinder the progression of oxidative stress,inflammation,and pathological fibrosis within the synovial tissue in FS,potentially leading to the reduction or reversal of capsule fibrosis and joint stiffness.For further clinical application,we design and synthesize a novel,superior,antioxidant and antibacterial CSMA-PBA/OD-DA(CPDA)hydrogel for the delivery of SaB.In vitro experiments demonstrate that the CPDA hydrogel exhibits excellent biocompatibility and rheological properties,rendering it suitable for intra-articular injections.Upon injection into the contracted joint cavity of FS model rat,the SaBCPDA hydrogel accelerate the recovery of ROM and exhibit superior anti-fibrosis effect,presenting the promise for the treatment of FS in vivo.展开更多
As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying tem...As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.展开更多
A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distributio...A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distribution of the non-uniform strain rate of saturated frozen soil at the meso-scale due to the local icecementation breakage is described by a newly binary-medium-based homogenization equation.Based on the field-equation-based approach of the meso-mechanics theory,the interaction expression of the strain rate at macro-and meso-scale is derived,which can give the strain rate concentration tensor at different crushed degrees.With the thermodynamics and empirical assumption,a breakage ratio in the rate-dependent form is determined.This overcomes the limitations of the existing binary-medium-based models that are difficult to simulate rate-dependent mechanical response.Based on these assumptions,a newly binary-medium-based rate-dependent model is proposed considering both the ice bond breakage and material composition characteristics of saturated frozen soil.The proposed constitutive model has been validated by the test results on frozen soils with different temperatures and strain rates.展开更多
In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as a...In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions.展开更多
BACKGROUND After vaccination was mandated worldwide,various adverse effects associated with the coronavirus disease 2019(COVID-19)vaccination,including shoulder pain,have been reported.Here,we report a case of new-ons...BACKGROUND After vaccination was mandated worldwide,various adverse effects associated with the coronavirus disease 2019(COVID-19)vaccination,including shoulder pain,have been reported.Here,we report a case of new-onset shoulder pain after BNT162b2(Comirnaty,Pfizer-BioNTech)mRNA vaccination.CASE SUMMARY A 50-year-old man visited our rehabilitation center with left shoulder range of motion(ROM)limitation that had persisted for more than 5 mo.The history included no specific noteworthy events,except vaccination.The pain in the patient’s left deltoid muscle appeared 1 day after the second BNT162b2 vaccination and intensified to severe pain.The patient self-administered aspirin,with which the pain subsided immediately,whereas ROM limitation persisted.At the first visit,the patient complained of dull pain and ROM restriction of the left shoulder(flexion 130°,abduction 110°,and external rotation 40°).Among the diagnostic studies conducted for the evaluation of the shoulder,magnetic resonance imaging showed a thickened coracohumeral ligament.Nerve conduction studies and needle electromyography showed no electrodiagnostic abnormalities.The patient received comprehensive rehabilitation for 7 mo and had an overall improvement in pain and ROM of the left shoulder.CONCLUSION In this case of severe shoulder pain after COVID-19 vaccination that subsided immediately with aspirin treatment,the exact cause and mechanism of pain are unclear.However,the clinical symptoms and diagnostic workups in our report suggest the possibility that the COVID-19 vaccination triggered an immunochemical response that resulted in shoulder pathology.展开更多
Objective To study the effectiveness and feasibility of cryogenic disinfectants in different cold scenarios and analyze the key points of on-site cryogenic disinfection.Methods Qingdao and Suifenhe were selected as ap...Objective To study the effectiveness and feasibility of cryogenic disinfectants in different cold scenarios and analyze the key points of on-site cryogenic disinfection.Methods Qingdao and Suifenhe were selected as application sites for the manual or mechanical spraying of cryogenic disinfectants.The same amount of disinfectant(3,000 mg/L)was applied on cold chain food packaging,cold chain containers,transport vehicles,alpine environments,and article surfaces.The killing log value of the cryogenic disinfectant against the indicator microorganisms(Staphylococcus aureus and Escherichia coli)was used to evaluate the on-site disinfection effect.Results When using 3,000 mg/L with an action time of 10 min on the ground in alpine regions,the surface of frozen items,cold-chain containers,and cold chain food packaging in supermarkets,all external surfaces were successfully disinfected,with a pass rate of 100%.The disinfection pass rates for cold chain food packaging and cold chain transport vehicles of centralized supervised warehouses and food processing enterprises were 12.5%(15/120),81.67%(49/60),and 93.33%(14/15),respectively;yet,the surfaces were not fully sprayed.Conclusion Cryogenic disinfectants are effective in disinfecting alpine environments and the outer packaging of frozen items.The application of cryogenic disinfectants should be regulated to ensure that they cover all surfaces of the disinfected object,thus ensuring effective cryogenic disinfection.展开更多
Buildings are always affected by frost heave and thaw settlement in cold regions,even where saline soil is present.This paper describes the triaxial testing results of frozen silty clay with high salt content and exam...Buildings are always affected by frost heave and thaw settlement in cold regions,even where saline soil is present.This paper describes the triaxial testing results of frozen silty clay with high salt content and examines the in-fluence of confining pressure and temperature on its mechanical characteristics.Conventional triaxial compression tests were conducted under different confining pressures(0.5–7.0 MPa)and temperatures(-6℃,-8℃,-10℃,and-12℃).The test results show that when the confining pressure is less than 1 MPa,the frozen saline silty clay is dominated by brittle behavior with the X-shaped dilatancy failure mode.As the confining pressure increases,the sample gradually transitions from brittle to plastic behavior.The strength of frozen saline silty clay rises first and then decreases with increasing confining pressure.The improved Duncan-Chang hyperbolic model can describe the stress-strain relationship of frozen saline silty clay.And the parabolic strength criterion can be used to describe the strength evolution of frozen saline silty clay.The function relation of strength parameters with temperature is obtained by fitting,and the results of the parabolic strength criterion are in good agreement with the experimental results,especially when confining pressure is less than 5 MPa.Therefore,the study has important guiding significance for design and construction when considering high salinity soil as an engineering material in cold regions.展开更多
Objective:To analyze the diagnostic value of frozen section pathology in the diagnosis of breast cancer.Methods:A total of 50 patients with breast tumors treated between July 2021 and February 2023 were randomly selec...Objective:To analyze the diagnostic value of frozen section pathology in the diagnosis of breast cancer.Methods:A total of 50 patients with breast tumors treated between July 2021 and February 2023 were randomly selected as samples.Both paraffin section and frozen section diagnoses were conducted.The paraffin section results served as the gold standard for evaluating the value of frozen section examination.Results:Among the frozen section diagnoses,48 cases(96.00%)were confirmed,1 case was misdiagnosed(2.00%),and 1 case was delayed(2.00%).Among the confirmed patients,45 cases(90.00%)were entirely consistent,and 3 cases(6.00%)were basically consistent.The diagnostic rate of the frozen section was 96.00%,compared with 100.00%for the paraffin section(P>0.05).The diagnostic time of the frozen section(35.25±2.11 min)was significantly shorter than that for the paraffin section(6911.36±58.36 min;P<0.05).Conclusion:Frozen section diagnosis is rapid and demonstrates relatively high diagnostic accuracy.It can guide doctors in determining whether to pursue breast-conserving treatment and aid in selecting appropriate surgical methods.This is beneficial for preventing unnecessary medical interventions and reducing the need for secondary surgeries in breast cancer patients.展开更多
基金financial support from the National Natural Science Foundation of China(41902272)Gansu Province Basic Research Innovation Group Project(21JR7RA347).
文摘To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
基金supported by the National Natural Science Foundation of China(Grant No.51979002)the Fundamental Research Funds for the Central Universities(Grant No.2022YJS080).
文摘The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘Affected by climate warming and anthropogenic disturbances, the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC) is continuously decreased, which may delay the construction of major projects in the future. In this study, based on chemical stabilization of warm and icerich frozen ground, the soil-cement column(SCC) for ground improvement was recommended to reinforce the foundations in warm and ice-rich permafrost regions. To explore the validity of countermeasures mentioned above, both the original foundation and the composite foundation consisting of SCC with soil temperature of -1.0℃ were prepared in the laboratory, and then the plate loading tests were carried out. The laboratory investigations indicated that the bearing capacity of composite foundation consisting of SCC was higher than that of original foundation, and the total deformation of original foundation was greater than that of composite foundation, meaning that overall stability of foundation with warm and ice-rich frozen soil can be improved by SCC installation. Meanwhile, a numerical model considering the interface interaction between frozen soil and SCC was established for interpretating the bearing mechanism of composite foundation. The numerical investigations revealed that the SCC within composite foundation was responsible for the more applied load, and the applied load can be delivered to deeper zone in depth due to the SCC installation, which was favorable for improving the bearing characteristic of composite foundation. The investigations provide the valuable guideline for the choice of engineering supporting techniques to major projects within the QTEC.
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.
基金supported by the National Natural Science Foundation of China(NO.81972067,82002342)the Fundamental Research Funds for the Central Universities,Sun Yatsen University(NO.2020004)Yan Yan and Xinhao Li contributed equally to this work.
文摘Frozen shoulder(FS)manifests as progressively worsening pain and a reduction in shoulder range of motion(ROM).Salvianolic acid B(SaB)is recently expected to be used in the treatment of fibrosis diseases including FS.We firstly demonstrate that SaB can effectively hinder the progression of oxidative stress,inflammation,and pathological fibrosis within the synovial tissue in FS,potentially leading to the reduction or reversal of capsule fibrosis and joint stiffness.For further clinical application,we design and synthesize a novel,superior,antioxidant and antibacterial CSMA-PBA/OD-DA(CPDA)hydrogel for the delivery of SaB.In vitro experiments demonstrate that the CPDA hydrogel exhibits excellent biocompatibility and rheological properties,rendering it suitable for intra-articular injections.Upon injection into the contracted joint cavity of FS model rat,the SaBCPDA hydrogel accelerate the recovery of ROM and exhibit superior anti-fibrosis effect,presenting the promise for the treatment of FS in vivo.
基金the National Natural Science Foundation of China (NSFC)(Grant Nos.U22A20596 and 41771066)the Science and Technology Project of Qinghai-Tibet Railway Company (QZ2021-G03)。
文摘As a widely-applied engineering material in cold regions, the frozen subgrade soils are usually subjected to seismic loading, which are also dramatically influenced by the freeze-thaw(F-T)cycles due to the varying temperature. A series of dynamic cyclic triaxial experiments were conducted through a cryogenic triaxial apparatus for exploring the influences of F-T cycles on the dynamic mechanical properties of frozen subgrade clay.According to the experimental results of frozen clay at the temperature of-10℃, the dynamic responses and microstructure variation at different times of F-T cycles(0, 1, 5, and 20 cycles) were explored in detail.It is experimentally demonstrated that the dynamic stress-strain curves and dynamic volumetric strain curves of frozen clay are significantly sparse after 20F-T cycles. Meanwhile, the cyclic number at failure(Nf) of the frozen specimen reduces by 89% after 20freeze-thaw cycles at a low ratio of the dynamic stress amplitude. In addition, with the increasing F-T cycles,the axial accumulative strain, residual deformation,and the value of damage variable of frozen clay increase, while the dynamic resilient modulus and dynamic strength decrease. Finally, the influence of the F-T cycles on the failure mechanisms of frozen clay was discussed in terms of the microstructure variation. These studies contribute to a better understanding of the fundamental changes in the dynamic mechanical of frozen soils exposed to F-T cycles in cold and seismic regions.
文摘A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distribution of the non-uniform strain rate of saturated frozen soil at the meso-scale due to the local icecementation breakage is described by a newly binary-medium-based homogenization equation.Based on the field-equation-based approach of the meso-mechanics theory,the interaction expression of the strain rate at macro-and meso-scale is derived,which can give the strain rate concentration tensor at different crushed degrees.With the thermodynamics and empirical assumption,a breakage ratio in the rate-dependent form is determined.This overcomes the limitations of the existing binary-medium-based models that are difficult to simulate rate-dependent mechanical response.Based on these assumptions,a newly binary-medium-based rate-dependent model is proposed considering both the ice bond breakage and material composition characteristics of saturated frozen soil.The proposed constitutive model has been validated by the test results on frozen soils with different temperatures and strain rates.
基金supported by the National Natural Science Foundation of China(Grant No.41971086)Natural Science Foundation of Shanxi Province(Grant No.2023-JC-QN-0626,2022JQ-467).
文摘In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Tibet Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions.
文摘BACKGROUND After vaccination was mandated worldwide,various adverse effects associated with the coronavirus disease 2019(COVID-19)vaccination,including shoulder pain,have been reported.Here,we report a case of new-onset shoulder pain after BNT162b2(Comirnaty,Pfizer-BioNTech)mRNA vaccination.CASE SUMMARY A 50-year-old man visited our rehabilitation center with left shoulder range of motion(ROM)limitation that had persisted for more than 5 mo.The history included no specific noteworthy events,except vaccination.The pain in the patient’s left deltoid muscle appeared 1 day after the second BNT162b2 vaccination and intensified to severe pain.The patient self-administered aspirin,with which the pain subsided immediately,whereas ROM limitation persisted.At the first visit,the patient complained of dull pain and ROM restriction of the left shoulder(flexion 130°,abduction 110°,and external rotation 40°).Among the diagnostic studies conducted for the evaluation of the shoulder,magnetic resonance imaging showed a thickened coracohumeral ligament.Nerve conduction studies and needle electromyography showed no electrodiagnostic abnormalities.The patient received comprehensive rehabilitation for 7 mo and had an overall improvement in pain and ROM of the left shoulder.CONCLUSION In this case of severe shoulder pain after COVID-19 vaccination that subsided immediately with aspirin treatment,the exact cause and mechanism of pain are unclear.However,the clinical symptoms and diagnostic workups in our report suggest the possibility that the COVID-19 vaccination triggered an immunochemical response that resulted in shoulder pathology.
基金supported by National Key R&D Program of China[grant number:2021YFC0863000]。
文摘Objective To study the effectiveness and feasibility of cryogenic disinfectants in different cold scenarios and analyze the key points of on-site cryogenic disinfection.Methods Qingdao and Suifenhe were selected as application sites for the manual or mechanical spraying of cryogenic disinfectants.The same amount of disinfectant(3,000 mg/L)was applied on cold chain food packaging,cold chain containers,transport vehicles,alpine environments,and article surfaces.The killing log value of the cryogenic disinfectant against the indicator microorganisms(Staphylococcus aureus and Escherichia coli)was used to evaluate the on-site disinfection effect.Results When using 3,000 mg/L with an action time of 10 min on the ground in alpine regions,the surface of frozen items,cold-chain containers,and cold chain food packaging in supermarkets,all external surfaces were successfully disinfected,with a pass rate of 100%.The disinfection pass rates for cold chain food packaging and cold chain transport vehicles of centralized supervised warehouses and food processing enterprises were 12.5%(15/120),81.67%(49/60),and 93.33%(14/15),respectively;yet,the surfaces were not fully sprayed.Conclusion Cryogenic disinfectants are effective in disinfecting alpine environments and the outer packaging of frozen items.The application of cryogenic disinfectants should be regulated to ensure that they cover all surfaces of the disinfected object,thus ensuring effective cryogenic disinfection.
基金the financial support provided by China’s Second Tibetan Plateau Scientific Expedition and Research (No. 2019QZKK0905)the National Natural Science Foundation of China (No. 41371090)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology (No. SKLGDUEK1904)
文摘Buildings are always affected by frost heave and thaw settlement in cold regions,even where saline soil is present.This paper describes the triaxial testing results of frozen silty clay with high salt content and examines the in-fluence of confining pressure and temperature on its mechanical characteristics.Conventional triaxial compression tests were conducted under different confining pressures(0.5–7.0 MPa)and temperatures(-6℃,-8℃,-10℃,and-12℃).The test results show that when the confining pressure is less than 1 MPa,the frozen saline silty clay is dominated by brittle behavior with the X-shaped dilatancy failure mode.As the confining pressure increases,the sample gradually transitions from brittle to plastic behavior.The strength of frozen saline silty clay rises first and then decreases with increasing confining pressure.The improved Duncan-Chang hyperbolic model can describe the stress-strain relationship of frozen saline silty clay.And the parabolic strength criterion can be used to describe the strength evolution of frozen saline silty clay.The function relation of strength parameters with temperature is obtained by fitting,and the results of the parabolic strength criterion are in good agreement with the experimental results,especially when confining pressure is less than 5 MPa.Therefore,the study has important guiding significance for design and construction when considering high salinity soil as an engineering material in cold regions.
文摘Objective:To analyze the diagnostic value of frozen section pathology in the diagnosis of breast cancer.Methods:A total of 50 patients with breast tumors treated between July 2021 and February 2023 were randomly selected as samples.Both paraffin section and frozen section diagnoses were conducted.The paraffin section results served as the gold standard for evaluating the value of frozen section examination.Results:Among the frozen section diagnoses,48 cases(96.00%)were confirmed,1 case was misdiagnosed(2.00%),and 1 case was delayed(2.00%).Among the confirmed patients,45 cases(90.00%)were entirely consistent,and 3 cases(6.00%)were basically consistent.The diagnostic rate of the frozen section was 96.00%,compared with 100.00%for the paraffin section(P>0.05).The diagnostic time of the frozen section(35.25±2.11 min)was significantly shorter than that for the paraffin section(6911.36±58.36 min;P<0.05).Conclusion:Frozen section diagnosis is rapid and demonstrates relatively high diagnostic accuracy.It can guide doctors in determining whether to pursue breast-conserving treatment and aid in selecting appropriate surgical methods.This is beneficial for preventing unnecessary medical interventions and reducing the need for secondary surgeries in breast cancer patients.