期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
辽宁省地温场结构及变化特征 被引量:7
1
作者 龚强 汪宏宇 +5 位作者 朱玲 徐红 顾正强 晁华 蔺娜 沈历都 《冰川冻土》 CSCD 北大核心 2017年第3期505-514,共10页
以辽宁省为例,采用统计分析方法,根据辽宁省61个气象站1951-2013年0~320 cm地温资料,分析了季节性冻土区地温场结构和变化特征。结果表明:地温最冷月出现时间随着深度增加而推后,辽宁各地浅层地温最冷月基本均为1月,深层地温最冷月为1-5... 以辽宁省为例,采用统计分析方法,根据辽宁省61个气象站1951-2013年0~320 cm地温资料,分析了季节性冻土区地温场结构和变化特征。结果表明:地温最冷月出现时间随着深度增加而推后,辽宁各地浅层地温最冷月基本均为1月,深层地温最冷月为1-5月,深度越深温度越高。地温最热月出现时间也随深度增加而推后,浅层地温最热月为7、8月,深层地温最热月为8-10月,深度越深温度越低。越深层地温受地表影响越小,320 cm深度与地表的月平均最大温差达到19℃左右,40 cm深度与地表的月平均最大温差仅在8℃左右。随着深度增加,地温的季节变化减小,沈阳320 cm深度地温年内温差不足8℃。5~80 cm深度3-8月为储能期,160 cm深度5-9月为储能期,320 cm深度6-10月为储能期。越接近地表,地温日变化越显著,40 cm以下深度基本可以忽略日变化。沈阳地温升高程度大于气温,以向大气输送热量为主。地表最冷月变暖率明显大于最热月,但随着土层加深各土层最冷月、最热月变暖的程度无明显规律。深层地温的年际变化有时会受到更深层热源的非气候扰动。地温变化对气候、冻土区域工程等的影响不容忽视。 展开更多
关键词 季节性冻土 地温 结构及变化 辽宁省
下载PDF
吉林省季节冻土冻结深度变化及对气候的响应 被引量:12
2
作者 任景全 刘玉汐 +4 位作者 王冬妮 穆佳 李兴阳 崔佳龙 郭春明 《冰川冻土》 CSCD 北大核心 2019年第5期1098-1106,共9页
为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、... 为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深,6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作用逐渐变强;当积雪深度达到20 cm时,保温作用显著,冻土冻结深度变浅。 展开更多
关键词 季节冻土 最大冻结深度 时空分布 气温 积雪深度 吉林省
下载PDF
吉林省冻土的统计特征 被引量:11
3
作者 倪超玉 王惠清 《冰川冻土》 CSCD 北大核心 1989年第1期34-43,共10页
本文根据吉林省42个气象台站1954—1980年冻土观测资料,系统地分析了不同冻土深度的地理分布状况和随时间的变化规律、最大冻土深度与12月平均地面最低温度的关系。同时分析了土壤稳定冻结和稳定融冻的起讫时间,反映出本省冻土有明显的... 本文根据吉林省42个气象台站1954—1980年冻土观测资料,系统地分析了不同冻土深度的地理分布状况和随时间的变化规律、最大冻土深度与12月平均地面最低温度的关系。同时分析了土壤稳定冻结和稳定融冻的起讫时间,反映出本省冻土有明显的季节性。还分析了土壤冻结速度,看出其上部为直线型,下部为曲线型的变化特征。 展开更多
关键词 冻土 统计 地面最低温度 吉林
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部