Tamarind fruit shell powder(TFSP)with particle size of<50μm(obtained from cleaned tamarind fruit shells)was modified with in situ generated copper nanoparticles(CuNPs)by simple one step hydrothermal method.The mod...Tamarind fruit shell powder(TFSP)with particle size of<50μm(obtained from cleaned tamarind fruit shells)was modified with in situ generated copper nanoparticles(CuNPs)by simple one step hydrothermal method.The modified TFSP was characterized by scanning electron microscope(SEM),Fourier transform infrared(FT-IR)spectroscopy,X-ray diffraction(XRD),thermogravi-metric analysis(TGA)and antibacterial tests.The generated stable CuNPs on the surface of the modified TFSP were spherical in shape with an average size of 88 nm.The FT-IR spectroscopy analysis indicated the involvement of the functional groups of the TFSP in the generation and stabilization of the CuNPs.The XRD analysis indicated the presence of both CuNPs and Cu 2 O nanoparticles in the modified TFSP.The thermal analysis indicated the presence of 5.6 wt%of copper nanoparticles as calculated from the difference of residual char content between the un-modified and modified TFSP.The modified TFSP with in situ generated CuNPs exhibited obvious antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be considered as low cost filler in the preparation of antibacterial polymer hybrid nanocomposites for packaging and medical applications.展开更多
This study deals with the valorization of natural residues into activated carbon prepared from waste“Baobab fruit shell”from the Fatick Region,Senegal.Thus,after the preparation of the baobab shell,a chemical activa...This study deals with the valorization of natural residues into activated carbon prepared from waste“Baobab fruit shell”from the Fatick Region,Senegal.Thus,after the preparation of the baobab shell,a chemical activation with orthophosphoric acid H3PO4(85%)was performed followed by pyrolysis at 530°C.To eliminate possible carbonization residues,the activated carbons were impregnated in 0.1 M hydrochloric acid and/or soda solutions and then washed thoroughly with distilled water to obtain a pH between 6.5 and 7.The latter were then dried in an oven at 105°C for 24 h.A characterization was carried out to determine the moisture content,the ash content,the iodine and methylene blue indices,the surface functions and the pH at zero charge point(pHpzc).The moisture and ash contents were 1.87%and 0.72%,respectively.The iodine and peroxide indices obtained were 939,09 mg/g and 575.73 mg/g,respectively.Surface function analysis by Boehm’s method showed that the acidic functions were higher than the basic functions and their pHpzc was lower than neutrality.The best efficiency of methylene blue removal was 99.75%and was obtained with a mass of 0.150 g of activated carbon,pH equal to 10,an initial concentration of methylene blue of 200 mg/L and a contact time of 35 min.展开更多
In this work we determine the physical and mechanical properties of local composites reinforced with papaya trunk fibers (FTP) on one hand and particles of the hulls of the kernels of the garlic (PCNFA) in the other h...In this work we determine the physical and mechanical properties of local composites reinforced with papaya trunk fibers (FTP) on one hand and particles of the hulls of the kernels of the garlic (PCNFA) in the other hand. The samples are produced according to BSI 2782 standards;by combining fibers and untreated to polyester matrix following the contact molding method. We notice that the long fibers of papaya trunks improve the tensile/compression characteristics of composites by 45.44% compared to pure polyester;while the short fibers improve the flexural strength of composites by 62.30% compared to pure polyester. Furthermore, adding fibers decreases the density of the final composite material and the rate of water absorption increases with the size of the fibers. As regards composite materials with particle reinforcement from the cores of the winged fruits, the particle size (fine ≤ 800 μm and large ≤ 1.6 mm) has no influence on the Young’s modulus and on the rate of water absorption. On the other hand, fine particles improve the flexural strength of composite materials by 53.08% compared to pure polyester;fine particles increase the density by 19% compared to the density of pure polyester.展开更多
The objective of this study was to determine the polyphenol, flavonoid and tannin content and the antioxidant power of methanolic extracts from the different parts of the Senegalese baobab fruit. Phytochemical screeni...The objective of this study was to determine the polyphenol, flavonoid and tannin content and the antioxidant power of methanolic extracts from the different parts of the Senegalese baobab fruit. Phytochemical screening revealed the presence of saponosides, tannins, alkaloids, sterols, flavonoids, coumarins and total sugars in all extracts from the fruit parts. </span><span style="font-family:""><span style="font-family:Verdana;">The total polyphe</span><span style="font-family:Verdana;">nol content was determined by the folin-ciocalteu method. This method is based on the quantification of the total concentration of hydroxyl groups present in the extract. In an alkaline medium, the reagent of folin-ciocalteu, oxidizes the phenols to ion phenolates and partially reduces its hetero-polyacids</span><span style="font-family:Verdana;">, hence the formation of a blue complex. The absorbance is read at 765 nm against</span><span style="font-family:Verdana;"> a control. The Flavonoids vere determined using </span><span style="font-family:Verdana;">aluminum trichloride and sodium hydroxide. Aluminum trichloride forms a yellow complex with flavonoids and sodium hydroxyde forms a pink complex absorbing in the visible range at 510 nm.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The alternative colorimetric method based on reactions with vanillin in an acidic medium made it possible to determine the tannin content. Absorbances were measured at 500 nm.</span><span style="font-family:Verdana;"> The results show that the methanolic extracts of the fibers and shell have very high polyphenol, flavonoid and tannin contents. In fact, the polyphenol contents of the fiber (159.00 ± 0.93 μg EAG/mg extract) and shell (155.39 ± 0.89 μg EAG/mg extract) were much higher than those of the pulp (27.21 ± 0.26 μg EAG/mg extract) and seeds (18.36 ± 0.07 μg EAG/mg extract). In addition, the flavonoid contents of the fibers (97.64 ± 0.40 μg EQ/mg) and of the shell (86.18 ± 0.46 μg EQ/mg) were higher than those of the seeds (12.82 ± 0.04 μg EQ/mg) and pulp (5.66 ± 0.18 μg EQ/mg). The tannin contents of the fibers (256.65 ± 1.45 μg EC/mg) and of the shell (196.05 ± 25 μg EC/mg) are higher than those of the pulp (103.09 ± 0.62 μg EC/mg extract) and seeds (1.09 ± 0.04 μg EC/mg extract). The antioxidant activity of extracts from different parts of the baobab fruit has Also been achieved using two different methods (DPPH and FRAP). The trapping capacity of the DPPH radical is very advantageous for the fibers (IC50 = 2.27 μg/mL) and the shell (IC50 = 1.52 μg/mL). The FRAP test has shown that the extracts from the shell (18.47 μg/mL) and fibers (20.00 μg/mL) have a greater iron reduction capacity than that of the standard ascorbic acid (45.64 μg/mL).展开更多
文摘Tamarind fruit shell powder(TFSP)with particle size of<50μm(obtained from cleaned tamarind fruit shells)was modified with in situ generated copper nanoparticles(CuNPs)by simple one step hydrothermal method.The modified TFSP was characterized by scanning electron microscope(SEM),Fourier transform infrared(FT-IR)spectroscopy,X-ray diffraction(XRD),thermogravi-metric analysis(TGA)and antibacterial tests.The generated stable CuNPs on the surface of the modified TFSP were spherical in shape with an average size of 88 nm.The FT-IR spectroscopy analysis indicated the involvement of the functional groups of the TFSP in the generation and stabilization of the CuNPs.The XRD analysis indicated the presence of both CuNPs and Cu 2 O nanoparticles in the modified TFSP.The thermal analysis indicated the presence of 5.6 wt%of copper nanoparticles as calculated from the difference of residual char content between the un-modified and modified TFSP.The modified TFSP with in situ generated CuNPs exhibited obvious antibacterial activity against both the Gram negative and Gram positive bacteria and hence can be considered as low cost filler in the preparation of antibacterial polymer hybrid nanocomposites for packaging and medical applications.
文摘This study deals with the valorization of natural residues into activated carbon prepared from waste“Baobab fruit shell”from the Fatick Region,Senegal.Thus,after the preparation of the baobab shell,a chemical activation with orthophosphoric acid H3PO4(85%)was performed followed by pyrolysis at 530°C.To eliminate possible carbonization residues,the activated carbons were impregnated in 0.1 M hydrochloric acid and/or soda solutions and then washed thoroughly with distilled water to obtain a pH between 6.5 and 7.The latter were then dried in an oven at 105°C for 24 h.A characterization was carried out to determine the moisture content,the ash content,the iodine and methylene blue indices,the surface functions and the pH at zero charge point(pHpzc).The moisture and ash contents were 1.87%and 0.72%,respectively.The iodine and peroxide indices obtained were 939,09 mg/g and 575.73 mg/g,respectively.Surface function analysis by Boehm’s method showed that the acidic functions were higher than the basic functions and their pHpzc was lower than neutrality.The best efficiency of methylene blue removal was 99.75%and was obtained with a mass of 0.150 g of activated carbon,pH equal to 10,an initial concentration of methylene blue of 200 mg/L and a contact time of 35 min.
文摘In this work we determine the physical and mechanical properties of local composites reinforced with papaya trunk fibers (FTP) on one hand and particles of the hulls of the kernels of the garlic (PCNFA) in the other hand. The samples are produced according to BSI 2782 standards;by combining fibers and untreated to polyester matrix following the contact molding method. We notice that the long fibers of papaya trunks improve the tensile/compression characteristics of composites by 45.44% compared to pure polyester;while the short fibers improve the flexural strength of composites by 62.30% compared to pure polyester. Furthermore, adding fibers decreases the density of the final composite material and the rate of water absorption increases with the size of the fibers. As regards composite materials with particle reinforcement from the cores of the winged fruits, the particle size (fine ≤ 800 μm and large ≤ 1.6 mm) has no influence on the Young’s modulus and on the rate of water absorption. On the other hand, fine particles improve the flexural strength of composite materials by 53.08% compared to pure polyester;fine particles increase the density by 19% compared to the density of pure polyester.
文摘The objective of this study was to determine the polyphenol, flavonoid and tannin content and the antioxidant power of methanolic extracts from the different parts of the Senegalese baobab fruit. Phytochemical screening revealed the presence of saponosides, tannins, alkaloids, sterols, flavonoids, coumarins and total sugars in all extracts from the fruit parts. </span><span style="font-family:""><span style="font-family:Verdana;">The total polyphe</span><span style="font-family:Verdana;">nol content was determined by the folin-ciocalteu method. This method is based on the quantification of the total concentration of hydroxyl groups present in the extract. In an alkaline medium, the reagent of folin-ciocalteu, oxidizes the phenols to ion phenolates and partially reduces its hetero-polyacids</span><span style="font-family:Verdana;">, hence the formation of a blue complex. The absorbance is read at 765 nm against</span><span style="font-family:Verdana;"> a control. The Flavonoids vere determined using </span><span style="font-family:Verdana;">aluminum trichloride and sodium hydroxide. Aluminum trichloride forms a yellow complex with flavonoids and sodium hydroxyde forms a pink complex absorbing in the visible range at 510 nm.</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">The alternative colorimetric method based on reactions with vanillin in an acidic medium made it possible to determine the tannin content. Absorbances were measured at 500 nm.</span><span style="font-family:Verdana;"> The results show that the methanolic extracts of the fibers and shell have very high polyphenol, flavonoid and tannin contents. In fact, the polyphenol contents of the fiber (159.00 ± 0.93 μg EAG/mg extract) and shell (155.39 ± 0.89 μg EAG/mg extract) were much higher than those of the pulp (27.21 ± 0.26 μg EAG/mg extract) and seeds (18.36 ± 0.07 μg EAG/mg extract). In addition, the flavonoid contents of the fibers (97.64 ± 0.40 μg EQ/mg) and of the shell (86.18 ± 0.46 μg EQ/mg) were higher than those of the seeds (12.82 ± 0.04 μg EQ/mg) and pulp (5.66 ± 0.18 μg EQ/mg). The tannin contents of the fibers (256.65 ± 1.45 μg EC/mg) and of the shell (196.05 ± 25 μg EC/mg) are higher than those of the pulp (103.09 ± 0.62 μg EC/mg extract) and seeds (1.09 ± 0.04 μg EC/mg extract). The antioxidant activity of extracts from different parts of the baobab fruit has Also been achieved using two different methods (DPPH and FRAP). The trapping capacity of the DPPH radical is very advantageous for the fibers (IC50 = 2.27 μg/mL) and the shell (IC50 = 1.52 μg/mL). The FRAP test has shown that the extracts from the shell (18.47 μg/mL) and fibers (20.00 μg/mL) have a greater iron reduction capacity than that of the standard ascorbic acid (45.64 μg/mL).