Flue gas desulfurization gypsum and clover planting alleviated the soil salinization stress.Soil pH and total phosphorus affected the bacterial communi-ties.Total phosphorus affected the fungal communities.Flue gas de...Flue gas desulfurization gypsum and clover planting alleviated the soil salinization stress.Soil pH and total phosphorus affected the bacterial communi-ties.Total phosphorus affected the fungal communities.Flue gas desulfurization gypsum and clover planting improved jujube quality.The coastal area of Shandong Province,characterized by coastal saline tidal soil,is one of the main production areas of winter jujube in China.However,the low soil fertility and poor soil structure in jujube orchard restricted the development of the jujube industry.The objectives of this study were to 1)evaluate the effect of application of flue gas desulfurization(FGD)gypsum and clover planting on soil quality improvement and soil microbial community structure of jujube orchard;2)investigate the effects of two measures on the nutrition and quality of winter jujube.The results showed that FGD gypsum reduced the soil total salt content by 65.6%,and clover planting increased the soil organic matter content by 30.7%,which effectively alleviated the soil salinization stress and improved the soil structure.Soil pH and total phosphorus(TP)were the main determinants influencing bacterial community composition,and TP was the dominant factor of the fungal community composition in the saline-alkali soils.Meanwhile,FGD gypsum addition and clover planting significantly increased the sugar degree and Vc content of winter jujube,thus improved jujube quality,and further contributed to the ecological sustainable development of winter jujube industry.展开更多
Industrial-use VOx-based catalysts usually have a higher active temperature window (>250-300℃),which becomes a“bottleneck”for the practical application of PCDD/Fs catalytic degradation technology.In this work,VO...Industrial-use VOx-based catalysts usually have a higher active temperature window (>250-300℃),which becomes a“bottleneck”for the practical application of PCDD/Fs catalytic degradation technology.In this work,VO_(x)-FeO_(x)/TiO_(2) catalyst prepared via mechanochemically method was investigated for the catalytic removal of PCDD/Fs.The removal efficiency of 1,2-DCBz,pure PCDD/Fs gas generated in the lab,PCDD/Fs from actual fue gas,long-term were studied,and the degradation mechanism was explored using FTIR and TOFMS.The degradation efficiency of 1,2-DCBz and PCDD/Fs on VO_(x)-FeO_(x)/TiO_(2) were higher than that of VO_(x)/TiO_(2)catalyst,and the optimal FeOx addition ratio was 3 wt.%.The characterization results show that the addition of FeOx can effectively improve the pore structure,surface acidity,and VOx dispersion of the catalyst,thus contributing to increasing the V^(5+)content and surface-active oxygen,which is conducive to the improvement of adsorption and redox performance of the catalyst.Under the actual MSWI (municipal solid waste incineration)fue gas,the PCDD/Fs removal efficiency over VTi-3Fe-MC maintained long-term stability,higher than 85%for 240 min.This result was not significantly reduced compared with the data obtained in the laboratory.According to the analysis results of intermediate products by FTIR and GC-TOFMS,it can be inferred that the epoxidation fracture of benzene ring is the rate-limiting step of dioxin catalytic degradation reaction.This work gives an in-depth view into the PCDD/Fs removal over VO_(x)-FeO_(x)/TiO_(2) catalysts and could provide guidelines for the rational design of reliable catalysts for industrial applications.展开更多
基金supported by the Forestry Science and Technology Innovation Project of Shandong Province(grant number 2019LY009)the National Key Basic Research Program of China(grant number2021YFD190090101).
文摘Flue gas desulfurization gypsum and clover planting alleviated the soil salinization stress.Soil pH and total phosphorus affected the bacterial communi-ties.Total phosphorus affected the fungal communities.Flue gas desulfurization gypsum and clover planting improved jujube quality.The coastal area of Shandong Province,characterized by coastal saline tidal soil,is one of the main production areas of winter jujube in China.However,the low soil fertility and poor soil structure in jujube orchard restricted the development of the jujube industry.The objectives of this study were to 1)evaluate the effect of application of flue gas desulfurization(FGD)gypsum and clover planting on soil quality improvement and soil microbial community structure of jujube orchard;2)investigate the effects of two measures on the nutrition and quality of winter jujube.The results showed that FGD gypsum reduced the soil total salt content by 65.6%,and clover planting increased the soil organic matter content by 30.7%,which effectively alleviated the soil salinization stress and improved the soil structure.Soil pH and total phosphorus(TP)were the main determinants influencing bacterial community composition,and TP was the dominant factor of the fungal community composition in the saline-alkali soils.Meanwhile,FGD gypsum addition and clover planting significantly increased the sugar degree and Vc content of winter jujube,thus improved jujube quality,and further contributed to the ecological sustainable development of winter jujube industry.
基金supported by the Natural Science Foundation of Zhejiang Province (No. LY21E060007)the National Natural Science Foundation of China (No. 52006191)。
文摘Industrial-use VOx-based catalysts usually have a higher active temperature window (>250-300℃),which becomes a“bottleneck”for the practical application of PCDD/Fs catalytic degradation technology.In this work,VO_(x)-FeO_(x)/TiO_(2) catalyst prepared via mechanochemically method was investigated for the catalytic removal of PCDD/Fs.The removal efficiency of 1,2-DCBz,pure PCDD/Fs gas generated in the lab,PCDD/Fs from actual fue gas,long-term were studied,and the degradation mechanism was explored using FTIR and TOFMS.The degradation efficiency of 1,2-DCBz and PCDD/Fs on VO_(x)-FeO_(x)/TiO_(2) were higher than that of VO_(x)/TiO_(2)catalyst,and the optimal FeOx addition ratio was 3 wt.%.The characterization results show that the addition of FeOx can effectively improve the pore structure,surface acidity,and VOx dispersion of the catalyst,thus contributing to increasing the V^(5+)content and surface-active oxygen,which is conducive to the improvement of adsorption and redox performance of the catalyst.Under the actual MSWI (municipal solid waste incineration)fue gas,the PCDD/Fs removal efficiency over VTi-3Fe-MC maintained long-term stability,higher than 85%for 240 min.This result was not significantly reduced compared with the data obtained in the laboratory.According to the analysis results of intermediate products by FTIR and GC-TOFMS,it can be inferred that the epoxidation fracture of benzene ring is the rate-limiting step of dioxin catalytic degradation reaction.This work gives an in-depth view into the PCDD/Fs removal over VO_(x)-FeO_(x)/TiO_(2) catalysts and could provide guidelines for the rational design of reliable catalysts for industrial applications.