In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ e...In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.展开更多
Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured ...Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.展开更多
An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature res...An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.展开更多
The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based t...The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.展开更多
为了探究典型金属粉末对燃料空气炸药(fuel air explosive,FAE)冲击波效应和热毁伤性能的影响,采用20 L球形液体爆炸测试系统并结合比色测温方法,深入研究了不同金属粉种类和含量下环氧丙烷(epoxypropane,PO)的燃爆特性、火焰结构及温...为了探究典型金属粉末对燃料空气炸药(fuel air explosive,FAE)冲击波效应和热毁伤性能的影响,采用20 L球形液体爆炸测试系统并结合比色测温方法,深入研究了不同金属粉种类和含量下环氧丙烷(epoxypropane,PO)的燃爆特性、火焰结构及温度分布特征。实验结果表明:纯环氧丙烷的最佳质量浓度为780 g/m^(3),最大爆燃超压Δp_(max)=0.799 MPa,最大压力上升速率(dp/dt)_(max)=52.438 MPa/s。添加Al粉、Ti粉和Mg粉的环氧丙烷最大燃爆超压、最大压力上升速率和最大火焰平均温度均随着金属粉末质量比(I)的增加而增大,而最大压力上升时间的变化趋势则与之相反;最大燃爆超压和最大火焰平均温度的变化规律一致,从大到小依次为:Al/PO、Mg/PO、Ti/PO,且当金属粉的质量比I=40%时,3种固-液混合燃料的?pmax值相较于纯环氧丙烷分别增加了12.00%、8.41%和11.54%;此外,最大压力上升速率和燃烧速率的变化规律一致,从大到小依次为:Mg/PO、Al/PO、Ti/PO,且当金属粉的质量比I=40%时,3种固-液混合燃料的(dp/dt)max值相较于纯环氧丙烷分别增加了41.91%、39.60%和45.29%。研究结果表明,不同高能金属粉末在改善环氧丙烷燃爆性能方面各有优势,在FAE的配方设计时,应根据毁伤性能指标合理选择金属粉末作为含能添加剂。展开更多
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 11802136)。
文摘In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate.Metal powders’ explosive properties and reaction mechanisms in FAE were studied by high-speed video,pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700C, which was higher than that of the pure liquid fuels. After replacing 30% of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.
文摘Aim To study fuel dispersion in fuel air explosive(FAE) and computational ways of fuel dispersion velocity in the near area. Methods\ The dispersion process of fuel in FAE was analyzed by the use of results measured with KODAK EKTAPRO EM Motion Analyzer and setting up mechanical models. Results\ Computational methods for fuel dispersion velocity in the acceleration stage is given and taken as a base for the study of fuel dispersion in the intermediate and the far area. Conclusion\ When the fuel flow velocity is higher than that of the explosion gas in the center cavity, the fuel divides with the explosion gas and its velocity of flow reaches a maximum. The acceleration stage ends at that time. The fuel dispersion velocity at this time is the initial conditions for numeral analyses of dispersion process in the intermediate and far areas.
基金Sponsored by the National Natural Science Foundation of China (10772032)
文摘An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.
文摘The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.