Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles.Since fuel cells cannot recover energy and have a slow dynamic response,they need to b...Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles.Since fuel cells cannot recover energy and have a slow dynamic response,they need to be used with different power sources.Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research.This paper proposes an adaptive equivalent fuel minimum consumption strategy(AECMS)to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors(EF)in traditional ECMS.In this method,the kinematics interval is used to update the equivalent factor by considering the penalty term of energy recovery on SOC changes.Finally,the optimized equivalent factor is substituted into the optimization objective function to achieve efficient energy regulation.Simulation results under the New European Driving Cycle show that compared with the traditional ECMS based on fixed SOC benchmarks,the proposed method improves fuel economy by 1.7%while ensuring vehicle power and increases SOC by 30%.展开更多
Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem rela...Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.展开更多
With the development of fuel cell electric vehicle industry in China,the 70-MPa hydrogen storage cylinders have been widely applied on vehicles in recent years.The revised standard,GB/T 26779-2021,Hydrogen fuel cell e...With the development of fuel cell electric vehicle industry in China,the 70-MPa hydrogen storage cylinders have been widely applied on vehicles in recent years.The revised standard,GB/T 26779-2021,Hydrogen fuel cell electric vehicle refueling receptacle,was released on March 9,2021 with added stipulations for the 70-MPa hydrogen refuelling receptacle.The main technical contents of GB/T 26779-2021 and its similarities and differences with GB/T 26779-2011 are discussed in this paper.展开更多
The national standard GB/T 24549—2009 Fuel Cell Electric Vehicle—Safety Requirements specifies the general safety requirements for whole vehicle and key parts of Fuel Cell Electric Vehicle (FCEV).It is of great sign...The national standard GB/T 24549—2009 Fuel Cell Electric Vehicle—Safety Requirements specifies the general safety requirements for whole vehicle and key parts of Fuel Cell Electric Vehicle (FCEV).It is of great significance for the development of FCEV in china.This paper discusses the main contents and the background of its development.展开更多
The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modif...The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modified bi directional class-E resonant dc-dc converter is introduced here in this proposed topology for the application in electric vehicles. The advantages of soft switching techniques have been utilized for making analysis simple. The main advantage here in this system is that it can operate in a wide range of frequencies with minimal switching loss in transistors. This paper elaborates a detailed analysis on converter design and the same has been simulated and verified in Matlab/Simulink.展开更多
The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction w...The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.展开更多
As we enter the age of electrochemical propulsion,there is an increasing tendency to discuss the viability or otherwise of different electrochemical propulsion systems in zero-sum terms.These discussions are often gro...As we enter the age of electrochemical propulsion,there is an increasing tendency to discuss the viability or otherwise of different electrochemical propulsion systems in zero-sum terms.These discussions are often grounded in a specific use case;however,given the need to electrify the wider transport sector it is evident that we must consider systems in a holistic fashion.When designed adequately,the hybridisation of power sources within automotive applications has been demonstrated to positively impact fuel cell efficiency,durability,and cost,while having potential benefits for the safety of vehicles.In this paper,the impact of the fuel cell to battery hybridisation degree is explored through the key design parameter of system mass.Different fuel cell electric hybrid vehicle(FCHEV)scenarios of various hydridisation degrees,including light-duty vehicles(LDVs),Class 8 heavy goods vehicles(HGVs),and buses are modelled to enable the appropriate sizing of the proton exchange membrane(PEMFC)stack and lithium-ion battery(LiB)pack and additional balance of plant.The operating conditions of the modelled PEMFC stack and battery pack are then varied under a range of relevant drive cycles to identify the relative performance of the systems.By extending the model further and incorporating a feedback loop,we are able to remove the need to include estimated vehicle masses a priori enabling improving the speed and accuracy of the model as an analysis tool for vehicle mass and performance estimation.展开更多
Electrification is considered essential for the decarbonization of mobility sector, and understanding and modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging...Electrification is considered essential for the decarbonization of mobility sector, and understanding and modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging, especially for product development and diagnostics requiring quick turnaround and fast computation. In this study, a novel modeling approach is developed, utilizing supervised machine learning algorithms, to replicate the dynamic characteristics of the fuel cell-battery hybrid power system in a 2021 Toyota Mirai 2nd generation (Mirai 2) vehicle under various drive cycles. The entire data for this study is collected by instrumenting the Mirai vehicle with in-house data acquisition devices and tapping into the Mirai controller area network bus during chassis dynamometer tests. A multi-input - multi-output, feed-forward artificial neural network architecture is designed to predict not only the fuel cell attributes, such as average minimum cell voltage, coolant and cathode air outlet temperatures, but also the battery hybrid system attributes, including lithium-ion battery pack voltage and temperature with the help of 15 system operating parameters. Over 21,0000 data points on various drive cycles having combinations of transient and near steady-state driving conditions are collected, out of which around 15,000 points are used for training the network and 6,000 for the evaluation of the model performance. Various data filtration techniques and neural network calibration processes are explored to condition the data and understand the impact on model performance. The calibrated neural network accurately predicts the hybrid power system dynamics with an R-squared value greater than 0.98, demonstrating the potential of machine learning algorithms for system development and diagnostics.展开更多
Vehicles using a single fuel cell as a power source often have problems such as slow response and inability to recover braking energy.Therefore,the current automobile market is mainly dominated by fuel cell hybrid veh...Vehicles using a single fuel cell as a power source often have problems such as slow response and inability to recover braking energy.Therefore,the current automobile market is mainly dominated by fuel cell hybrid vehicles.In this study,the fuel cell hybrid commercial vehicle is taken as the research object,and a fuel cell/battery/supercapacitor energy topology is proposed,and an energy management strategy based on a double-delay deep deterministic policy gradient is designed for this topological structure.This strategy takes fuel cell hydrogen consumption,fuel cell life loss,and battery life loss as the optimization goals,in which supercapacitors play the role of coordinating the power output of the fuel cell and the battery,providing more optimization ranges for the optimization of fuel cells and batteries.Compared with the deep deterministic policy gradient strategy(DDPG)and the nonlinear programming algorithm strategy,this strategy has reduced hydrogen consumption level,fuel cell loss level,and battery loss level,which greatly improves the economy and service life of the power system.The proposed EMS is based on the TD3 algorithm in deep reinforcement learning,and simultaneously optimizes a number of indicators,which is beneficial to prolong the service life of the power system.展开更多
In the paper,a novel self-learning energy management strategy(EMS)is proposed for fuel cell hybrid electric vehicles(FCHEV)to achieve the hydrogen saving and maintain the battery operation.In the EMS,it is proposed to...In the paper,a novel self-learning energy management strategy(EMS)is proposed for fuel cell hybrid electric vehicles(FCHEV)to achieve the hydrogen saving and maintain the battery operation.In the EMS,it is proposed to approximate the EMS policy function with fuzzy inference system(FIS)and learn the policy parameters through policy gradient reinforcement learning(PGRL).Thus,a so-called Fuzzy REINFORCE algorithm is first proposed and studied for EMS problem in the paper.Fuzzy REINFORCE is a model-free method that the EMS agent can learn itself through interactions with environment,which makes it independent of model accuracy,prior knowledge,and expert experience.Meanwhile,to stabilize the training process,a fuzzy baseline function is adopted to approximate the value function based on FIS without affecting the policy gradient direction.More-over,the drawbacks of traditional reinforcement learning such as high computation burden,long convergence time,can also be overcome.The effectiveness of the proposed methods were verified by Hardware-in-Loop ex-periments.The adaptability of the proposed method to the changes of driving conditions and system states is also verified.展开更多
为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误...为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.展开更多
基金This work was supported by National Key R&D Program of China(Grant No.2020YFB0106603)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912).
文摘Proton exchange membrane fuel cells are widely regarded as having the potential to replace internal combustion engines in vehicles.Since fuel cells cannot recover energy and have a slow dynamic response,they need to be used with different power sources.Developing efficient energy management strategies to achieve excellent fuel economy is the goal of research.This paper proposes an adaptive equivalent fuel minimum consumption strategy(AECMS)to solve the problem of the poor economy of the whole vehicle caused by the wrong selection of equivalent factors(EF)in traditional ECMS.In this method,the kinematics interval is used to update the equivalent factor by considering the penalty term of energy recovery on SOC changes.Finally,the optimized equivalent factor is substituted into the optimization objective function to achieve efficient energy regulation.Simulation results under the New European Driving Cycle show that compared with the traditional ECMS based on fixed SOC benchmarks,the proposed method improves fuel economy by 1.7%while ensuring vehicle power and increases SOC by 30%.
基金This work was supported by the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)。
文摘Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.
基金supported by the National Key Research and Development Program of China with the project number of 2021YFB2501500
文摘With the development of fuel cell electric vehicle industry in China,the 70-MPa hydrogen storage cylinders have been widely applied on vehicles in recent years.The revised standard,GB/T 26779-2021,Hydrogen fuel cell electric vehicle refueling receptacle,was released on March 9,2021 with added stipulations for the 70-MPa hydrogen refuelling receptacle.The main technical contents of GB/T 26779-2021 and its similarities and differences with GB/T 26779-2011 are discussed in this paper.
文摘The national standard GB/T 24549—2009 Fuel Cell Electric Vehicle—Safety Requirements specifies the general safety requirements for whole vehicle and key parts of Fuel Cell Electric Vehicle (FCEV).It is of great significance for the development of FCEV in china.This paper discusses the main contents and the background of its development.
文摘The interests on energy storage schemes, bidirectional dc-dc converter and uninterruptible power supplies have been increasing nowadays as there wide researches are undertaken in the area of electric vehicles. A modified bi directional class-E resonant dc-dc converter is introduced here in this proposed topology for the application in electric vehicles. The advantages of soft switching techniques have been utilized for making analysis simple. The main advantage here in this system is that it can operate in a wide range of frequencies with minimal switching loss in transistors. This paper elaborates a detailed analysis on converter design and the same has been simulated and verified in Matlab/Simulink.
文摘The aim of this paper is to present a new topology of a DC-DC power converter for conditioning the current and voltages behaviors of embarked energy sources used in electrical vehicles. The fuel cells in conjunction with ultra-capacitors have been chosen as the power supply. The originality of the proposed converter is to use a variable voltage of the DC bus of the vehicle. The goal is to allow a better energy management of the embedded sources onboard the vehicle by improving its energy efficiency. After presenting and explaining the topology of the converter, some simulation and experiments results are shown to highlight its different operation modes.
文摘As we enter the age of electrochemical propulsion,there is an increasing tendency to discuss the viability or otherwise of different electrochemical propulsion systems in zero-sum terms.These discussions are often grounded in a specific use case;however,given the need to electrify the wider transport sector it is evident that we must consider systems in a holistic fashion.When designed adequately,the hybridisation of power sources within automotive applications has been demonstrated to positively impact fuel cell efficiency,durability,and cost,while having potential benefits for the safety of vehicles.In this paper,the impact of the fuel cell to battery hybridisation degree is explored through the key design parameter of system mass.Different fuel cell electric hybrid vehicle(FCHEV)scenarios of various hydridisation degrees,including light-duty vehicles(LDVs),Class 8 heavy goods vehicles(HGVs),and buses are modelled to enable the appropriate sizing of the proton exchange membrane(PEMFC)stack and lithium-ion battery(LiB)pack and additional balance of plant.The operating conditions of the modelled PEMFC stack and battery pack are then varied under a range of relevant drive cycles to identify the relative performance of the systems.By extending the model further and incorporating a feedback loop,we are able to remove the need to include estimated vehicle masses a priori enabling improving the speed and accuracy of the model as an analysis tool for vehicle mass and performance estimation.
文摘Electrification is considered essential for the decarbonization of mobility sector, and understanding and modeling the complex behavior of modern fuel cell-battery electric-electric hybrid power systems is challenging, especially for product development and diagnostics requiring quick turnaround and fast computation. In this study, a novel modeling approach is developed, utilizing supervised machine learning algorithms, to replicate the dynamic characteristics of the fuel cell-battery hybrid power system in a 2021 Toyota Mirai 2nd generation (Mirai 2) vehicle under various drive cycles. The entire data for this study is collected by instrumenting the Mirai vehicle with in-house data acquisition devices and tapping into the Mirai controller area network bus during chassis dynamometer tests. A multi-input - multi-output, feed-forward artificial neural network architecture is designed to predict not only the fuel cell attributes, such as average minimum cell voltage, coolant and cathode air outlet temperatures, but also the battery hybrid system attributes, including lithium-ion battery pack voltage and temperature with the help of 15 system operating parameters. Over 21,0000 data points on various drive cycles having combinations of transient and near steady-state driving conditions are collected, out of which around 15,000 points are used for training the network and 6,000 for the evaluation of the model performance. Various data filtration techniques and neural network calibration processes are explored to condition the data and understand the impact on model performance. The calibrated neural network accurately predicts the hybrid power system dynamics with an R-squared value greater than 0.98, demonstrating the potential of machine learning algorithms for system development and diagnostics.
基金National Natural Science Foundation of China[Grant No.51805254].
文摘Vehicles using a single fuel cell as a power source often have problems such as slow response and inability to recover braking energy.Therefore,the current automobile market is mainly dominated by fuel cell hybrid vehicles.In this study,the fuel cell hybrid commercial vehicle is taken as the research object,and a fuel cell/battery/supercapacitor energy topology is proposed,and an energy management strategy based on a double-delay deep deterministic policy gradient is designed for this topological structure.This strategy takes fuel cell hydrogen consumption,fuel cell life loss,and battery life loss as the optimization goals,in which supercapacitors play the role of coordinating the power output of the fuel cell and the battery,providing more optimization ranges for the optimization of fuel cells and batteries.Compared with the deep deterministic policy gradient strategy(DDPG)and the nonlinear programming algorithm strategy,this strategy has reduced hydrogen consumption level,fuel cell loss level,and battery loss level,which greatly improves the economy and service life of the power system.The proposed EMS is based on the TD3 algorithm in deep reinforcement learning,and simultaneously optimizes a number of indicators,which is beneficial to prolong the service life of the power system.
基金This work has been supported by the ANR DEAL(contract ANR-20-CE05-0016-01)This work has also been partially funded by Region Sud Provence-Alpes-Cote d’Azur via project AMULTI(2021_02918).
文摘In the paper,a novel self-learning energy management strategy(EMS)is proposed for fuel cell hybrid electric vehicles(FCHEV)to achieve the hydrogen saving and maintain the battery operation.In the EMS,it is proposed to approximate the EMS policy function with fuzzy inference system(FIS)and learn the policy parameters through policy gradient reinforcement learning(PGRL).Thus,a so-called Fuzzy REINFORCE algorithm is first proposed and studied for EMS problem in the paper.Fuzzy REINFORCE is a model-free method that the EMS agent can learn itself through interactions with environment,which makes it independent of model accuracy,prior knowledge,and expert experience.Meanwhile,to stabilize the training process,a fuzzy baseline function is adopted to approximate the value function based on FIS without affecting the policy gradient direction.More-over,the drawbacks of traditional reinforcement learning such as high computation burden,long convergence time,can also be overcome.The effectiveness of the proposed methods were verified by Hardware-in-Loop ex-periments.The adaptability of the proposed method to the changes of driving conditions and system states is also verified.
文摘为有效地提高插电式燃料电池汽车的经济性,实现燃料电池和动力电池的功率最优分配,考虑到行驶工况、电池荷电状态(State of charge,SOC)、等效因子与氢气消耗之间的密切联系,制定融合工况预测的里程自适应等效氢耗最小策略.通过基于误差反向传播的神经网络来实现未来短期车速的预测,分析未来车辆需求功率变化,同时借助全球定位系统规划一条通往目的地的路径,智能交通系统便可获取整个行程的交通流量信息,利用行驶里程和SOC实时动态修正等效消耗最小策略中的等效因子,实现能量管理策略的自适应性.基于MATLAB/Simulink软件,搭建整车仿真模型与传统的能量管理策略进行仿真对比验证.仿真结果表明,采用基于神经网络的工况预测算法能够较好地预测未来短期工况,其预测精度相较于马尔可夫方法提高12.5%,所提出的能量管理策略在城市道路循环工况(UDDS)下的氢气消耗比电量消耗维持(CD/CS)策略下降55.6%.硬件在环试验表明,在市郊循环工况(EUDC)下的氢气消耗比CD/CS策略下降26.8%,仿真验证结果表明了所提出的策略相比于CD/CS策略在氢气消耗方面的优越性能,并通过硬件在环实验验证了所提策略的有效性.