Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been us...Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been used to improve the performance of DMFCs. Catalytic materials composed of small, metallic particles with unique nanostructure supparted on carbons or metal oxides have been widely investigated for use in DMFCs. Despite our increased understanding of this type of fuel cell, many challenges still remain. This paper reviews the current developments of nanostructured elec- trocatalytic materials and porous electrodes for use in DMFCs. In particular, this review focuses on the synthesis and characterization of nanostructured catalysts and supporting materials. Both computational and experimental approaches to optimize mass transportation in porous electrodes of DMFCs, such as theoretical modeling of internal transfer processes and preparation of functional structures in membrane electrode assemblies, are introduced.展开更多
The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transp...The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed.展开更多
Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performanc...Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.展开更多
This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Met...This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cell. Three methods are commonly used to manufacture lithium battery electrodes: the roller-applied method, the spraying-applied method, and the scrape-applied method. This study develops novel scrape-applied equip- ment for lithium battery electrodes. This method is novel and suitable for producing fuel cell, better than other tradi- tional methods. In this study, the stability of coating process was tested by measuring the weight and thickness of a dry electrode. The stability and reproducibility of electrode fab- rication were examined by systematic data analysis. Finally, the study used a specially designed single cell composed of 16 conductive segments, which are insulated locally. The current passing through each segment was measured using Hall Effect sensors connected to the segment compartments. Based on the measured distribution of the local current in a segmented single cell, the influence of flooding and stoi- chiometry variation of feed gas was discussed in terms of electrochemical reaction rate. The experimental results serve as an important basis for future research in this field, which hold potential benefits to the academia and the industry.展开更多
La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fa...La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fabricated by tape-casting and screen printing.Fabrication process was optimized firstly by comparing co-sintering and separate-sintering of electrode and electrolyte.To further improve the LSCFN electrode properties,oxygen ionic conductor of Gd(0.1)Ce(0.9)O(2-δ)(GDC)was added into the LSCFN electrode.The preferred composition of LSCFN-GDC composite electrode was found to be 1:1 in weight ratio with polarization resistance of 0.16Ωcm^2at 800~℃.The maximum power densities of LSCFN-GDC||GDC/YSZ/GDC||LSCFN-GDC tested in H2and CH4with 3%H2O were 395 m W cm^(-2)and 124 m W cm^(-2)at 850~?C,respectively,which were much higher than that of LSCFN||GDC/YSZ/GDC||LSCFN cells at same condition,possibly due to the extension of the triple phase boundary induced by the addition of GDC.The cell showed reasonable stability using H2and CH4with 3%H2O as fuels and no significant power output degradation was observed after total 200 h operation.展开更多
Co-Pd bimetallic catalysts immobilized with four kinds of resins with different specific areas were prepared by means of the solvated metal atom impregnation (SMAI) method. The results of the XRD and the magnetic meas...Co-Pd bimetallic catalysts immobilized with four kinds of resins with different specific areas were prepared by means of the solvated metal atom impregnation (SMAI) method. The results of the XRD and the magnetic measurement showed that as the specific area of the resin increased, the particle sizes of Co and Pd on the catalysts with the same metal content decreased, so the catalytic activity of the catalysts for the hydrogenation of diacetone alcohol as well as the reduction of oxygen on the fuel cell electrode increased. Below 140 , the conversion of diacetone alcohol increased as the reaction temperature increased, and above 140 , the conversion decreased because of the rupture of the resin.展开更多
基金supported by the National Natural Science Foundation of China(51274028)~~
文摘Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been used to improve the performance of DMFCs. Catalytic materials composed of small, metallic particles with unique nanostructure supparted on carbons or metal oxides have been widely investigated for use in DMFCs. Despite our increased understanding of this type of fuel cell, many challenges still remain. This paper reviews the current developments of nanostructured elec- trocatalytic materials and porous electrodes for use in DMFCs. In particular, this review focuses on the synthesis and characterization of nanostructured catalysts and supporting materials. Both computational and experimental approaches to optimize mass transportation in porous electrodes of DMFCs, such as theoretical modeling of internal transfer processes and preparation of functional structures in membrane electrode assemblies, are introduced.
文摘The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed.
基金supported by the Key Project of Natural Science Fund of Shandong Province (ZR2011BZ008)the Marine Renewable Energy Special Fund Project from the State Oceanic Administration PRC (GHME2011GD04)+2 种基金the Scientific and Technology Development Plan Project of Shandong Province,China (2008GG10007003)the Key Laboratory of Submarine Geoscience and Exploring Technology of the Ministry of Education,Ocean University of China (Grant No. 2008-01)the Key Laboratory of Marine Environment & Ecology,Ministry of Education (Grant No. 2008010)
文摘Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions.
文摘This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cell. Three methods are commonly used to manufacture lithium battery electrodes: the roller-applied method, the spraying-applied method, and the scrape-applied method. This study develops novel scrape-applied equip- ment for lithium battery electrodes. This method is novel and suitable for producing fuel cell, better than other tradi- tional methods. In this study, the stability of coating process was tested by measuring the weight and thickness of a dry electrode. The stability and reproducibility of electrode fab- rication were examined by systematic data analysis. Finally, the study used a specially designed single cell composed of 16 conductive segments, which are insulated locally. The current passing through each segment was measured using Hall Effect sensors connected to the segment compartments. Based on the measured distribution of the local current in a segmented single cell, the influence of flooding and stoi- chiometry variation of feed gas was discussed in terms of electrochemical reaction rate. The experimental results serve as an important basis for future research in this field, which hold potential benefits to the academia and the industry.
基金supported by the National Natural Science Foundation of China (No. 51402355)Natural Science Foundation of Beijing Project (Nos. LJ201531 and 2154056)+1 种基金Shanxi Province Project (No. MD2014-08)Guangdong Project (No. 201460720100025)
文摘La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fabricated by tape-casting and screen printing.Fabrication process was optimized firstly by comparing co-sintering and separate-sintering of electrode and electrolyte.To further improve the LSCFN electrode properties,oxygen ionic conductor of Gd(0.1)Ce(0.9)O(2-δ)(GDC)was added into the LSCFN electrode.The preferred composition of LSCFN-GDC composite electrode was found to be 1:1 in weight ratio with polarization resistance of 0.16Ωcm^2at 800~℃.The maximum power densities of LSCFN-GDC||GDC/YSZ/GDC||LSCFN-GDC tested in H2and CH4with 3%H2O were 395 m W cm^(-2)and 124 m W cm^(-2)at 850~?C,respectively,which were much higher than that of LSCFN||GDC/YSZ/GDC||LSCFN cells at same condition,possibly due to the extension of the triple phase boundary induced by the addition of GDC.The cell showed reasonable stability using H2and CH4with 3%H2O as fuels and no significant power output degradation was observed after total 200 h operation.
基金National Natural Science Foundation of China and Natural Science Fundation of Tianjin.
文摘Co-Pd bimetallic catalysts immobilized with four kinds of resins with different specific areas were prepared by means of the solvated metal atom impregnation (SMAI) method. The results of the XRD and the magnetic measurement showed that as the specific area of the resin increased, the particle sizes of Co and Pd on the catalysts with the same metal content decreased, so the catalytic activity of the catalysts for the hydrogenation of diacetone alcohol as well as the reduction of oxygen on the fuel cell electrode increased. Below 140 , the conversion of diacetone alcohol increased as the reaction temperature increased, and above 140 , the conversion decreased because of the rupture of the resin.