期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Nanostructured electrocatalytic materials and porous electrodes for direct methanol fuel cells 被引量:1
1
作者 王萌 王新东 +2 位作者 陈明 杨兆一 董超振 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第7期1037-1048,共12页
Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been us... Direct methanol fuel cells (DMFCs) are promising for use in portable devices because of advantages such as high fuel energy density, low working temperature and low emission of pollutants. Nanotechnology has been used to improve the performance of DMFCs. Catalytic materials composed of small, metallic particles with unique nanostructure supparted on carbons or metal oxides have been widely investigated for use in DMFCs. Despite our increased understanding of this type of fuel cell, many challenges still remain. This paper reviews the current developments of nanostructured elec- trocatalytic materials and porous electrodes for use in DMFCs. In particular, this review focuses on the synthesis and characterization of nanostructured catalysts and supporting materials. Both computational and experimental approaches to optimize mass transportation in porous electrodes of DMFCs, such as theoretical modeling of internal transfer processes and preparation of functional structures in membrane electrode assemblies, are introduced. 展开更多
关键词 CatalystPorous electrodeMethanol crossoverElectrocatalytic performanceMembrane electrode assemblyDirect methanol fuel cells
下载PDF
Efficient Thickness of Solid Oxide Fuel Cell Composite Electrode
2
作者 蒋治亿 夏长荣 陈仿林 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第2期217-225,I0002,共10页
The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transp... The efficient thickness of a composite electrode for solid oxide fuel cells was directly calculated by developing a physical model taking into account of the charge transfer process, the oxygen ion and electron transportation, and the microstructure characteristics of the electrode. The efficient thickness, which is defined as the electrode thickness corresponding to the minimum electrode polarization resistance, is formulated as a function of charge transfer resistivity, effective resistivity to ion and electron transport, and three-phase boundary length per unit volume. The model prediction is compared with the experimental reports to check the validity. Simulation is performed to show the effect of microstructure, intrinsic material properties, and electrode reaction mechanism on the efficient thickness. The results suggest that when an electrode is fabricated, its thickness should be controlled regarding its composition, particle size of its components, the intrinsic ionic and electronic conductivities,and its reaction mechanisms as well as the expected operation temperatures. The sensitivity of electrode polarization resistance to its thickness is also discussed. 展开更多
关键词 Composite electrode Solid oxide fuel cell Thickness Modeling Ionic conduc-tivity
下载PDF
Electrochemical Properties of Electrodes with Different Shapes and Diffusion Kinetic Analysis of Microbial Fuel Cells on Ocean Floor 被引量:3
3
作者 FU Yubin LIU Jia +3 位作者 SU Jia ZHAO Zhongkai LIU Yang XU Qian 《Journal of Ocean University of China》 SCIE CAS 2012年第1期25-31,共7页
Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performanc... Microbial fuel cell(MFC) on the ocean floor is a kind of novel energy-harvesting device that can be developed to drive small instruments to work continuously.The shape of electrode has a great effect on the performance of the MFC.In this paper,several shapes of electrode and cell structure were designed,and their performance in MFC were compared in pairs:Mesh(cell-1) vs.flat plate(cell-2),branch(cell-3) vs.cylinder(cell-4),and forest(cell-5) vs.disk(cell-6) FC.Our results showed that the maximum power densities were 16.50,14.20,19.30,15.00,14.64,and 9.95 mWm-2 for cell-1,2,3,4,5 and 6 respectively.And the corre-sponding diffusion-limited currents were 7.16,2.80,18.86,10.50,18.00,and 6.900 mA.The mesh and branch anodes showed higher power densities and much higher diffusion-limited currents than the flat plate and the cylinder anodes respectively due to the low diffusion hindrance with the former anodes.The forest cathode improved by 47% of the power density and by 161% of diffusion-limited current than the disk cathode due to the former's extended solid/liquid/gas three-phase boundary.These results indicated that the shape of electrode is a major parameter that determining the diffusion-limited current of an MFC,and the differences in the elec-trode shape lead to the differences in cell performance.These results would be useful for MFC structure design in practical applica-tions. 展开更多
关键词 microbial fuel cell on ocean floor electrode shape diffusion kinetics three-phase boundary power output
下载PDF
A novel scrape-applied method for the manufacture of the membrane-electrode assembly of the fuel-cell system
4
作者 S. D. Wu C. P. Chou +2 位作者 R. G. Peng C. H. Lee Y. Z. Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期831-837,共7页
This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Met... This study investigates the transfer of the scrape-applied method from the electrodes of a lithium battery to the membrane-electrode assembly of fuel cells, including Proton Exchange Membrane Fuel Cells and Direct Methanol Fuel Cell. Three methods are commonly used to manufacture lithium battery electrodes: the roller-applied method, the spraying-applied method, and the scrape-applied method. This study develops novel scrape-applied equip- ment for lithium battery electrodes. This method is novel and suitable for producing fuel cell, better than other tradi- tional methods. In this study, the stability of coating process was tested by measuring the weight and thickness of a dry electrode. The stability and reproducibility of electrode fab- rication were examined by systematic data analysis. Finally, the study used a specially designed single cell composed of 16 conductive segments, which are insulated locally. The current passing through each segment was measured using Hall Effect sensors connected to the segment compartments. Based on the measured distribution of the local current in a segmented single cell, the influence of flooding and stoi- chiometry variation of feed gas was discussed in terms of electrochemical reaction rate. The experimental results serve as an important basis for future research in this field, which hold potential benefits to the academia and the industry. 展开更多
关键词 fuel cells . Scraper . electrode. Lithium battery - Reliability
下载PDF
Fabrication and optimization of La_(0.4)Sr_(0.6)Co_(0.2)Fe_(0.7)Nb_(0.1)O_(3-δ) electrode for symmetric solid oxide fuel cell with zirconia based electrolyte 被引量:4
5
作者 Na Xu Tenglong Zhu +1 位作者 Zhibin Yang Minfang Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1329-1333,共5页
La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fa... La(0.4)Sr(0.6)Co(0.2)Fe(0.7)Nb(0.1)O(3-δ)(LSCFN)was applied as both anode and cathode for symmetrical solid oxide fuel cells(SSOFCs)with zirconia based electrolyte.The cell with LSCFN electrode was fabricated by tape-casting and screen printing.Fabrication process was optimized firstly by comparing co-sintering and separate-sintering of electrode and electrolyte.To further improve the LSCFN electrode properties,oxygen ionic conductor of Gd(0.1)Ce(0.9)O(2-δ)(GDC)was added into the LSCFN electrode.The preferred composition of LSCFN-GDC composite electrode was found to be 1:1 in weight ratio with polarization resistance of 0.16Ωcm^2at 800~℃.The maximum power densities of LSCFN-GDC||GDC/YSZ/GDC||LSCFN-GDC tested in H2and CH4with 3%H2O were 395 m W cm^(-2)and 124 m W cm^(-2)at 850~?C,respectively,which were much higher than that of LSCFN||GDC/YSZ/GDC||LSCFN cells at same condition,possibly due to the extension of the triple phase boundary induced by the addition of GDC.The cell showed reasonable stability using H2and CH4with 3%H2O as fuels and no significant power output degradation was observed after total 200 h operation. 展开更多
关键词 LSCFN electrode Triple phase boundary Solid oxide fuel cells
原文传递
Effects of the Specific Area and the Thermal Stability of a Polymer on the Catalytic Activities of Polymer Immobilized Co-Pd Catalysts by SAMI 被引量:1
6
作者 WU Shi-hua WEI Wei +5 位作者 ZHU Chang-ying HUANG Wei-ping ZHANG Shou-min ZHENG Xiu-cheng ZHANG Shu-hong ZHAO Wei-jun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第4期439-444,共6页
Co-Pd bimetallic catalysts immobilized with four kinds of resins with different specific areas were prepared by means of the solvated metal atom impregnation (SMAI) method. The results of the XRD and the magnetic meas... Co-Pd bimetallic catalysts immobilized with four kinds of resins with different specific areas were prepared by means of the solvated metal atom impregnation (SMAI) method. The results of the XRD and the magnetic measurement showed that as the specific area of the resin increased, the particle sizes of Co and Pd on the catalysts with the same metal content decreased, so the catalytic activity of the catalysts for the hydrogenation of diacetone alcohol as well as the reduction of oxygen on the fuel cell electrode increased. Below 140 , the conversion of diacetone alcohol increased as the reaction temperature increased, and above 140 , the conversion decreased because of the rupture of the resin. 展开更多
关键词 Cobalt-palladium catalyst Diacetone alcohol hydrogenation fuel cell electrode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部