A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance o...A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.展开更多
At present,most fuel cell engines are single-stack systems,and high-power single-stack systems have bottlenecks in meeting the power requirements of heavy-duty trucks,mainly because the increase in the single active a...At present,most fuel cell engines are single-stack systems,and high-power single-stack systems have bottlenecks in meeting the power requirements of heavy-duty trucks,mainly because the increase in the single active area and the excessive number of cells will lead to poor distribution uniformity of water,gas and heat in the stack,which will cause local attenuation and reduce the performance of the stack.This paper introduces the design concept of internal combustion engine,takes three-stack fuel cell engine as an example,designs multi-stack fuel cell system scheme and serialized high-voltage scheme.Through Intelligent control technology of independent hydrogen injection based on multi-stack coupling,the hydrogen injection inflow of each stack is controlled online according to the real-time anode pressure to achieve accurate fuel injection of a single stack and ensure the consistency between multiple stacks.proves the performance advantage of multi-stack fuel cell engine through theoretical design,intelligent control and test verification,and focuses on analyzing the key technical problems that may exist in multi-stack consistency.The research results provide a reference for the design of multi-stack fuel cell engines,and have important reference value for the powertrain design of long-distance heavy-duty and high-power fuel cell trucks.展开更多
Energy optimization management can make fuel cell truck(FCT)power system more efficient,so as to improve vehicle fuel economy.When the structure of power source system and the torque distribution strategy are determin...Energy optimization management can make fuel cell truck(FCT)power system more efficient,so as to improve vehicle fuel economy.When the structure of power source system and the torque distribution strategy are determined,the essence is to find the reasonable distribution of electric power between the fuel cell and other energy sources.The paper simulates the assistance of the intelligent transport system(ITS)and carries out the eco-velocity planning using the traffic signal light.On this basis,in order to further improve the energy efficiency of FCT,a model predictive control(MPC)-based energy source optimization management strategy is innovatively developed,which uses Dijkstra algorithm to achieve the minimization of equivalent hydrogen consumption.Under the scenarios of signalized intersections,based on the planned eco-velocity,the off-line simulation results show that the proposed MPC-based energy source management strategy(ESMS)can reduce hydrogen consumption of fuel cell up to 7%compared with the existing rule-based ESMS.Finally,the Hardware-in-the-Loop(HiL)simulation test is carried out to verify the effectiveness and real-time performance of the proposed MPC-based energy source optimization management strategy for the FCT based on eco-velocity planning with the assistance of traffic light information.展开更多
基金AVL LIST GM BH(A-8020 Graz,Hans-List-Platz 1)for its funding
文摘A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission.
文摘At present,most fuel cell engines are single-stack systems,and high-power single-stack systems have bottlenecks in meeting the power requirements of heavy-duty trucks,mainly because the increase in the single active area and the excessive number of cells will lead to poor distribution uniformity of water,gas and heat in the stack,which will cause local attenuation and reduce the performance of the stack.This paper introduces the design concept of internal combustion engine,takes three-stack fuel cell engine as an example,designs multi-stack fuel cell system scheme and serialized high-voltage scheme.Through Intelligent control technology of independent hydrogen injection based on multi-stack coupling,the hydrogen injection inflow of each stack is controlled online according to the real-time anode pressure to achieve accurate fuel injection of a single stack and ensure the consistency between multiple stacks.proves the performance advantage of multi-stack fuel cell engine through theoretical design,intelligent control and test verification,and focuses on analyzing the key technical problems that may exist in multi-stack consistency.The research results provide a reference for the design of multi-stack fuel cell engines,and have important reference value for the powertrain design of long-distance heavy-duty and high-power fuel cell trucks.
基金the National Natural Science Foundation of China(No.U1564208).
文摘Energy optimization management can make fuel cell truck(FCT)power system more efficient,so as to improve vehicle fuel economy.When the structure of power source system and the torque distribution strategy are determined,the essence is to find the reasonable distribution of electric power between the fuel cell and other energy sources.The paper simulates the assistance of the intelligent transport system(ITS)and carries out the eco-velocity planning using the traffic signal light.On this basis,in order to further improve the energy efficiency of FCT,a model predictive control(MPC)-based energy source optimization management strategy is innovatively developed,which uses Dijkstra algorithm to achieve the minimization of equivalent hydrogen consumption.Under the scenarios of signalized intersections,based on the planned eco-velocity,the off-line simulation results show that the proposed MPC-based energy source management strategy(ESMS)can reduce hydrogen consumption of fuel cell up to 7%compared with the existing rule-based ESMS.Finally,the Hardware-in-the-Loop(HiL)simulation test is carried out to verify the effectiveness and real-time performance of the proposed MPC-based energy source optimization management strategy for the FCT based on eco-velocity planning with the assistance of traffic light information.